Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 31453149 (2007).
2. J. Rudnick and E. A. Stern, “Second harmonic radiation from metal surfaces,” Phys. Rev. B 4, 42744290 (1971).
3. A. Wokaun, J. G. Bergmann, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface second-harmonic generation from metal island films and microlithographic structures,” Phys. Rev. B 24, 849856 (1981).
4. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: Small-particle limit,” J. Opt. Soc. Am. B 21, 13281347 (2004).
5. M. D. McMahon, R. Lopez, R. F. Haglund, Jr., E. A. Ray, and P. H. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 0414013149 (2006).
6. B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 54185423 (2004).
7. M. Celebrano, M. Zavelani-Rossi, P. Biagioni, D. Polli, M. Finazzi, L. Du, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, P. Royer, and P.-M. Adam, “Mapping local field distribution at metal nanostructures by near-field second-harmonic generation,” Proc. SPIE 6641, 66411E (2007).
8. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, “Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy,” Opt. Lett. 28, 713715 (2003).
9. H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 42744277 (2006).
10. C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
11. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
12. N. I. Zheludev and V. I. Emelyanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6, 2628 (2004).
13. C. C. Neacsu, G. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B 71, 201402 (2005).
14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 43704379 (1972).
15. C. Hafner, Post-Modern Electromagnetics: Using Intelligent MaXwell Solvers (John Wiley & Sons, New York, 1999).
16. C. Hafner, MaX-1. A Visual Electromagnetics Platform for PCs (John Wiley & Sons, Chichester, 1998).
17. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
18. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 40454048 (1999).
19. J. E. Sipe, V. C. Y. So, and M. F. G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B 21, 43894402 (1980).
20. M. Weber and A. Liebsch, “Density-functional approach to second-harmonic generation at metal surfaces,” Phys. Rev. B 35, 74117416 (1987).
21.Note that the total second-harmonic field consists of direct second-harmonic emission (radiation emitted from an emitter A) and the scattered second-harmonic radiation (radiation emitted from A scattered on another emitter B in the neighborhood). Nevertheless, the scattered radiation is negligible compared to direct emission, as further model calculations have shown.
22. Z. Bouchal and M. Olivk, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42, 15551566 (1995).

Data & Media loading...


Article metrics loading...



Second-harmonic generation (SHG) of light at nanoparticles provides the possibility to generate light (of a desired frequency) in-situ instead of introducing it by focusing an external light beam. Our theoretical study provides steering SHG light through the superposition of the radiation from a number of nanoparticles which are arranged in a circle. The authors assume cone-shaped or rod-shaped nanoparticles. Their radiation can be modeled as radiating dipoles. The superposition of their fields yields a “hot spot” with a full width at half-maximum of around 100 nm. Even more important, the position of the hot spot within the circular arrangement of nanoantennas can be adjusted in the xy plane simply by changing the incident angle of the exciting beam.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd