1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Laser-assisted nanofabrication of carbon nanostructures
Rent:
Rent this article for
Access full text Article
/content/lia/journal/jla/24/4/10.2351/1.4716046
1.
1. H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature (London) 318, 162163 (1985).
http://dx.doi.org/10.1038/318162a0
2.
2. S. Iijima, “Helical microtubules of graphitic carbon,” Nature (London) 354, 5658 (1991).
http://dx.doi.org/10.1038/354056a0
3.
3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666669 (2004).
http://dx.doi.org/10.1126/science.1102896
4.
4. P. G. Collins and P. Avouris, “Nanotubes for electronics,” Sci. Am. 283, 6269 (2000).
http://dx.doi.org/10.1038/scientificamerican1200-62
5.
5. J. Appenzeller, J. Knoch, R. Martel, V. Derycke, S. J. Wind, and P. Avouris, “Carbon nanotube electronics,” IEEE Trans. Nanotechnol. 1, 184189 (2002).
http://dx.doi.org/10.1109/TNANO.2002.807390
6.
6. J. Appenzeller, R. Martel, V. Derycke, M. Radosavjevic, S. Wind, D. Neumayer, and P. Avouris, “Carbon nanotubes as potential building blocks for future nanoelectronics,” Microelectron. Eng. 64, 391397 (2002).
http://dx.doi.org/10.1016/S0167-9317(02)00813-4
7.
7. P. Avouris, “Molecular electronics with carbon nanotubes,” Acc. Chem. Res. 35, 10261034 (2002).
http://dx.doi.org/10.1021/ar010152e
8.
8. P. Avouris, “Carbon nanotube electronics,” Chem. Phys. 281, 429445 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00376-2
9.
9. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes - the route toward applications,” Science 297, 787792 (2002).
http://dx.doi.org/10.1126/science.1060928
10.
10. H. J. Dai, “Carbon nanotubes: opportunities and challenges,” Surf. Sci. 500, 218241 (2002).
http://dx.doi.org/10.1016/S0039-6028(01)01558-8
11.
11. W. Hoenlein, F. Kreupl, G. S. Duesberg, A. P. Graham, M. Liebau, R. V. Seidel, and E. Unger, “Carbon nanotube applications in microelectronics,” IEEE Trans. Compon. Packag. Technol. 27, 629634 (2004).
http://dx.doi.org/10.1109/TCAPT.2004.838876
12.
12. P. Avouris and J. Chen, “Nanotube electronics and optoelectronics,” Mater. Today 9, 4654 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71653-4
13.
13. P. Avouris, J. Chen, M. Freitag, V. Perebeinos, and J. C. Tsang, “Carbon nanotube optoelectronics,” Phys. Status Solidi B 243, 31973203 (2006).
http://dx.doi.org/10.1002/pssb.200669137
14.
14. P. Avouris, Z. H. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2, 605615 (2007).
http://dx.doi.org/10.1038/nnano.2007.300
15.
15. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183191 (2007).
http://dx.doi.org/10.1038/nmat1849
16.
16. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611622 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
17.
17. C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon 48, 21272150 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.01.058
18.
18. A. Mostofizadeh, Y. W. Li, B. Song, and Y. D. Huang, “Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials,” J. Nanomater. 2011, 685081 (2011).
http://dx.doi.org/10.1155/2011/685081
19.
19. D. Ugarte, “Curling and closure of graphitic networks under electron-beam irradiation,” Nature (London) 359, 707709 (1992).
http://dx.doi.org/10.1038/359707a0
20.
20. L. M. Viculis, J. J. Mack, and R. B. Kaner, “A chemical route to carbon nanoscrolls,” Science 299, 13611361 (2003).
http://dx.doi.org/10.1126/science.1078842
21.
21. K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533537 (2008).
http://dx.doi.org/10.1038/nnano.2008.200
22.
22. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. J. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature (London) 424, 654657 (2003).
http://dx.doi.org/10.1038/nature01797
23.
23. H. Li, C. Xu, N. Srivastava, and K. Banerjee, “Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects,” IEEE Trans. Electron Devices 56, 17991821 (2009).
http://dx.doi.org/10.1109/TED.2009.2026524
24.
24. Y. H. Hu, O. A. Shenderova, Z. Hu, C. W. Padgett, and D. W. Brenner, “Carbon nanostructures for advanced composites,” Rep. Prog. Phys. 69, 18471895 (2006).
http://dx.doi.org/10.1088/0034-4885/69/6/R05
25.
25. R. Martel, V. Derycke, J. Appenzeller, P. H. S. Wong, and P. Avouris, “Carbon nanotube field-effect transistors and logic devices,” Abstr. Pap. - Am. Chem. Soc. 222, U184U185 (2001).
26.
26. S. Ghosh, A. K. Sood, and N. Kumar, “Carbon nanotube flow sensors,” Science 299, 10421044 (2003).
http://dx.doi.org/10.1126/science.1079080
27.
27. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, “Carbon nanotube-based nonvolatile random access memory for molecular computing,” Science 289, 9497 (2000).
http://dx.doi.org/10.1126/science.289.5476.94
28.
28. J. Wang, Y. Chen, and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem. 19, 74257443 (2009).
http://dx.doi.org/10.1039/b906294g
29.
29. F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, and W. Honlein, “Carbon nanotubes in interconnect applications,” Microelectron. Eng. 64, 399408 (2002).
http://dx.doi.org/10.1016/S0167-9317(02)00814-6
30.
30. M. Y. A. Yousif, P. Lundgren, F. Ghavanini, P. Enoksson, and S. Bengtsson, “CMOS considerations in nanoelectromechanical carbon nanotube-based switches,” Nanotechnology 19, 285204 (2008).
http://dx.doi.org/10.1088/0957-4484/19/28/285204
31.
31. P. R. Bandaru, “Electrical properties and applications of carbon nanotube structures,” J. Nanosci. Nanotechnol. 7, 12391267 (2007).
http://dx.doi.org/10.1166/jnn.2007.307
32.
32. H. J. Dai, A. Javey, E. Pop, D. Mann, W. Kim, and Y. R. Lu, “Electrical transport properties and field effect transistors of carbon nanotubes,” NANO 1, 113 (2006).
http://dx.doi.org/10.1142/S1793292006000070
33.
33. D. S. Hecht, L. B. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23, 14821513 (2011).
http://dx.doi.org/10.1002/adma.201003188
34.
34. B. K. Kaushik, S. Goel, and G. Rauthan, “Future VLSI interconnects: optical fiber or carbon nanotube - a review,” Microelectron. Int. 24, 5363 (2007).
http://dx.doi.org/10.1108/13565360710745601
35.
35. R. Prasher, “Graphene spreads the heat,” Science 328, 185186 (2010).
http://dx.doi.org/10.1126/science.1188998
36.
36. J. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor,” Mater. Today 13, 5259 (2010).
http://dx.doi.org/10.1016/S1369-7021(10)70034-1
37.
37. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8, 17041708 (2008).
http://dx.doi.org/10.1021/nl080649i
38.
38. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8, 24582462 (2008).
http://dx.doi.org/10.1021/nl801457b
39.
39. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature (London) 457, 706710 (2009).
http://dx.doi.org/10.1038/nature07719
40.
40. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic circuits based on carbon nanotubes,” Physica E (Amsterdam) 16, 4246 (2003).
http://dx.doi.org/10.1016/S1386-9477(02)00580-5
41.
41. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic circuits with carbon nanotube transistors,” Science 294, 13171320 (2001).
http://dx.doi.org/10.1126/science.1065824
42.
42. T. Hayashi, Y. A. Kim, T. Natsuki, and M. Endo, “Mechanical properties of carbon nanomaterials,” ChemPhysChem 8, 9991004 (2007).
http://dx.doi.org/10.1002/cphc.200700077
43.
43. P. Avouris, “Nanotube electronics - Electronics with carbon nanotubes,” Phys. World 20, 4045 (2007).
44.
44. S. X. Lu, Y. Liu, N. Shao, and B. Panchapakesan, “Nanotube micro-opto-mechanical systems,” Nanotechnology 18, 065501 (2007).
http://dx.doi.org/10.1088/0957-4484/18/6/065501
45.
45. J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, “Nanotube molecular wires as chemical sensors,” Science 287, 622625 (2000).
http://dx.doi.org/10.1126/science.287.5453.622
46.
46. M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. H. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett. 3, 10671071 (2003).
http://dx.doi.org/10.1021/nl034313e
47.
47. P. Sharma and P. Ahuja, “Recent advances in carbon nanotube-based electronics,” Mater. Res. Bull. 43, 25172526 (2008).
http://dx.doi.org/10.1016/j.materresbull.2007.10.012
48.
48. S. B. Yang, B. S. Kong, D. H. Jung, Y. K. Baek, C. S. Han, S. K. Oh, and H. T. Jung, “Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films,” Nanoscale 3, 13611373 (2011).
http://dx.doi.org/10.1039/c0nr00855a
49.
49. X. L. Liang, S. Wang, X. L. Wei, L. Ding, Y. Z. Zhu, Z. Y. Zhang, Q. Chen, Y. Li, J. Zhang, and L. M. Peng, “Towards entire-carbon-nanotube circuits: the fabrication of single-walled-carbon-nanotube field-effect transistors with local multiwalled-carbon-nanotube interconnects,” Adv. Mater. 21, 13391343 (2009).
http://dx.doi.org/10.1002/adma.200802758
50.
50. A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, and M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5, 454463 (2010).
http://dx.doi.org/10.1007/s11671-010-9543-z
51.
51. J. B. Park, W. Xiong, Y. Gao, M. Qian, Z. Q. Xie, M. Mitchell, Y. S. Zhou, G. H. Han, L. Jiang, and Y. F. Lu, “Fast growth of graphene patterns by laser direct writing,” Appl. Phys. Lett. 98, 123109 (2011).
http://dx.doi.org/10.1063/1.3569720
52.
52. J. B. Park, W. Xiong, Z. Q. Xie, Y. Gao, M. Qian, M. Mitchell, M. Mahjouri-Samani, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Transparent interconnections formed by rapid single-step fabrication of graphene patterns,” Appl. Phys. Lett. 99, 053103 (2011).
http://dx.doi.org/10.1063/1.3622660
53.
53. M. Mahjouri-Samani, Y. S. Zhou, W. Xiong, Y. Gao, M. Mitchell, L. Jiang, and Y. F. Lu, “Diameter modulation by fast temperature control in laser-assisted chemical vapor deposition of single-walled carbon nanotubes,” Nanotechnology 21, 395601 (2010).
http://dx.doi.org/10.1088/0957-4484/21/39/395601
54.
54. M. Mahjouri-Samani, Y. S. Zhou, W. Xiong, Y. Gao, M. Mitchell, and Y. F. Lu, “Laser induced selective removal of metallic carbon nanotubes,” Nanotechnology 20, 495202 (2009).
http://dx.doi.org/10.1088/0957-4484/20/49/495202
55.
55. Y. S. Zhou, W. Xiong, Y. Gao, M. Mahjouri-Samani, M. Mitchell, L. Jiang, and Y. F. Lu, “Towards carbon-nanotube integrated devices: optically controlled parallel integration of single-walled carbon nanotubes,” Nanotechnology 21, 315601 (2010).
http://dx.doi.org/10.1088/0957-4484/21/31/315601
56.
56. W. Xiong, Y. S. Zhou, M. Mahjouri-Samani, W. Q. Yang, K. J. Yi, X. N. He, S. H. Liou, and Y. F. Lu, “Self-aligned growth of single-walled carbon nanotubes using optical near-field effects,” Nanotechnology 20, 025601 (2009).
http://dx.doi.org/10.1088/0957-4484/20/2/025601
57.
57. Y. Gao, Y. S. Zhou, J. B. Park, H. Wang, X. N. He, H. F. Luo, L. Jiang, and Y. F. Lu, “Resonant excitation of precursor molecules in improving the particle crystallinity, growth rate and optical limiting performance of carbon nano-onions,” Nanotechnology 22, 165604 (2011).
http://dx.doi.org/10.1088/0957-4484/22/16/165604
58.
58. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385388 (2008).
http://dx.doi.org/10.1126/science.1157996
59.
59. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102, 1045110453 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
60.
60. S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574578 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
61.
61. X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9, 43594363 (2009).
http://dx.doi.org/10.1021/nl902623y
62.
62. P. Sutter, “Epitaxial graphene: how silicon leaves the scene,” Nature Mater. 8, 171172 (2009).
http://dx.doi.org/10.1038/nmat2392
63.
63. V. Y. Aristov, G. Urbanik, K. Kummer, D. V. Vyalikh, O. V. Molodtsova, A. B. Preobrajenski, A. A. Zakharov, C. Hess, T. Hanke, B. Buchner, I. Vobornik, J. Fujii, G. Panaccione, Y. A. Ossipyan, and M. Knupfer, “Graphene synthesis on cubic SiC/Si wafers. perspectives for mass production of graphene-based electronic devices,” Nano Lett. 10, 992995 (2010).
http://dx.doi.org/10.1021/nl904115h
64.
64. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 13121314 (2009).
http://dx.doi.org/10.1126/science.1171245
65.
65. Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490493 (2010).
http://dx.doi.org/10.1021/nl903272n
66.
66. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature (London) 393, 4952 (1998).
http://dx.doi.org/10.1038/29954
67.
67. M. C. LeMieux, M. Roberts, S. Barman, Y. W. Jin, J. M. Kim, and Z. N. Bao, “Self-sorted, aligned nanotube networks for thin-film transistors,” Science 321, 101104 (2008).
http://dx.doi.org/10.1126/science.1156588
68.
68. V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, “Carbon nanotube inter- and intramolecular logic gates,” Nano Lett. 1, 453456 (2001).
http://dx.doi.org/10.1021/nl015606f
69.
69. P. Avouris, R. Martel, V. Derycke, and J. Appenzeller, “Carbon nanotube transistors and logic circuits,” Physica B 323, 614 (2002).
http://dx.doi.org/10.1016/S0921-4526(02)00870-0
70.
70. Y. C. Tseng, P. Q. Xuan, A. Javey, R. Malloy, Q. Wang, J. Bokor, and H. J. Dai, “Monolithic integration of carbon nanotube devices with silicon MOS technology,” Nano Lett. 4, 123127 (2004).
http://dx.doi.org/10.1021/nl0349707
71.
71. A. P. Graham, G. S. Duesberg, R. Seidel, M. Liebau, E. Unger, F. Kreupl, and W. Honlein, “Towards the integration of carbon nanotubes in microelectronics,” Diamond Relat. Mater. 13, 12961300 (2004).
http://dx.doi.org/10.1016/j.diamond.2003.10.080
72.
72. N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Appl. Phys. Lett. 81, 913915 (2002).
http://dx.doi.org/10.1063/1.1497710
73.
73. I. I. Bobrinetskii, “Methods of parallel integration of carbon nanotubes during the formation of functional devices for microelectronics and sensor technologies,” Russ. Microelectron. 38, 353360 (2009).
http://dx.doi.org/10.1134/S1063739709050047
74.
74. D. Akinwande, S. Yasuda, B. Paul, S. Fujita, G. Close, and H. S. P. Wong, “Monolithic Integration of CMOS XLSI and carbon nanotubes for hybrid nanotechnology applications,” IEEE Trans. Nanotechnol. 7, 636639 (2008).
http://dx.doi.org/10.1109/TNANO.2008.2003438
75.
75. M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, and R. Superfine, “Bending and buckling of carbon nanotubes under large strain,” Nature (London) 389, 582584 (1997).
http://dx.doi.org/10.1038/39282
76.
76. X. J. Duan, J. Zhang, X. Ling, and Z. F. Liu, “Nano-welding by scanning probe microscope,” J. Am. Chem. Soc. 127, 82688269 (2005).
http://dx.doi.org/10.1021/ja051280r
77.
77. J. Lefebvre, J. F. Lynch, M. Llaguno, M. Radosavljevic, and A. T. Johnson, “Single-wall carbon nanotube circuits assembled with an atomic force microscope,” Appl. Phys. Lett. 75, 30143016 (1999).
http://dx.doi.org/10.1063/1.125218
78.
78. Y. Y. Wei and G. Eres, “Directed assembly of carbon nanotube electronic circuits,” Appl. Phys. Lett. 76, 37593761 (2000).
http://dx.doi.org/10.1063/1.126772
79.
79. Y. Y. Wei and G. Eres, “Direct fabrication of carbon nanotube circuits by selective area chemical vapour deposition on pre-patterned structures,” Nanotechnology 11, 6164 (2000).
http://dx.doi.org/10.1088/0957-4484/11/2/304
80.
80. Y. Y. Wei, X. Fan, and G. Eres, “Directed assembly of carbon nanotube electronic circuits by selective area chemical vapor deposition on prepatterned catalyst electrode structures,” J. Vac. Sci. Technol. B 18, 35863589 (2000).
http://dx.doi.org/10.1116/1.1319709
81.
81. K. Keren, R. S. Berman, E. Buchstab, U. Sivan, and E. Braun, “DNA-templated carbon nanotube field-effect transistor,” Science 302, 13801382 (2003).
http://dx.doi.org/10.1126/science.1091022
82.
82. H. J. Xin and A. T. Woolley, “DNA-templated nanotube localization,” J. Am. Chem. Soc. 125, 87108711 (2003).
http://dx.doi.org/10.1021/ja035902p
83.
83. L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, “Directed placement of suspended carbon nanotubes for nanometer-scale assembly,” Appl. Phys. Lett. 80, 38263828 (2002).
http://dx.doi.org/10.1063/1.1481237
84.
84. J. Q. Li, Q. Zhang, N. Peng, and Q. Zhu, “Manipulation of carbon nanotubes using AC dielectrophoresis,” Appl. Phys. Lett. 86, 153116 (2005).
http://dx.doi.org/10.1063/1.1901825
85.
85. R. H. M. Chan, C. K. M. Fung, and W. J. Li, “Rapid assembly of carbon nanotubes for nanosensing by dielectrophoretic force,” Nanotechnology 15, S672S677 (2004).
http://dx.doi.org/10.1088/0957-4484/15/10/028
86.
86. J. Y. Chung, K. H. Lee, J. H. Lee, and R. S. Ruoff, “Toward large-scale integration of carbon nanotubes,” Langmuir 20, 30113017 (2004).
http://dx.doi.org/10.1021/la035726y
87.
87. C. M. K. M. Fung, V. T. S. Wong, R. H. M. Chan, and W. J. Li, “Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors,” IEEE Trans. Nanotechnol. 3, 395403 (2004).
http://dx.doi.org/10.1109/TNANO.2004.834156
88.
88. Y. Nakayama, L. J. Pan, and G. Takeda, “Low-temperature growth of vertically aligned carbon nanotubes using binary catalysts,” Jpn. J. Appl. Phys., Part 1 45, 369371 (2006).
http://dx.doi.org/10.1143/JJAP.45.369
89.
89. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Rep., Phys. Lett. 409, 4799 (2005).
http://dx.doi.org/10.1016/j.physrep.2004.10.006
90.
90. A. G. Souza, S. G. Chou, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, L. An, J. Liu, A. K. Swan, M. S. Unlu, B. B. Goldberg, A. Jorio, A. Gruneis, and R. Saito, “Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes,” Phys. Rev. B 69, 115428 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115428
91.
91. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, “Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering,” Phys. Rev. Lett. 86, 11181121 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1118
92.
92. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, “Carbon nanotubes as Schottky barrier transistors,” Phys. Rev. Lett. 89, 106801 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.106801
93.
93. N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174180 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00883-2
94.
94. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645648 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.645
95.
95. A. Jorio, A. G. Souza, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, and R. Saito, “G-band resonant Raman study of 62 isolated single-wall carbon nanotubes,” Phys. Rev. B 65, 155412 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.155412
96.
96. R. Saito, A. Jorio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, “Chirality-dependent G-band Raman intensity of carbon nanotubes,” Phys. Rev. B 64, 085312 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085312
97.
97. S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, and K. Kneipp, “Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes,” Phys. Rev. B 63, 155414 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.155414
98.
98. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103, 25552558 (1999).
http://dx.doi.org/10.1016/S0379-6779(98)00278-1
99.
99. Y. Miyata, K. Yanagi, Y. Maniwa, and H. Kataura, “Optical properties of metallic and semiconducting single-wall carbon nanotubes,” Phys. Status Solidi B 245(10), 22332238 (2008).
http://dx.doi.org/10.1002/pssb.200879648
100.
100. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes,” Nature (London) 391, 5962 (1998).
http://dx.doi.org/10.1038/34139
101.
101. Y. G. Yao, X. C. Dai, R. Liu, J. Zhang, and Z. F. Liu, “Tuning the diameter of single-walled carbon nanotubes by temperature-mediated chemical vapor deposition,” J. Phys. Chem. C 113, 1305113059 (2009).
http://dx.doi.org/10.1021/jp901366h
102.
102. W. Song, C. Jeon, Y. S. Kim, Y. T. Kwon, D. S. Jung, S. W. Jang, W. C. Choi, J. S. Park, R. Saito, and C. Y. Park, “Synthesis of bandgap-controlled semiconducting single-walled carbon nanotubes,” ACS Nano 4, 10121018 (2010).
http://dx.doi.org/10.1021/nn901135b
103.
103. H. M. Manohara, E. W. Wong, E. Schlecht, B. D. Hunt, and P. H. Siegel, “Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications,” Nano Lett. 5, 14691474 (2005).
http://dx.doi.org/10.1021/nl050829h
104.
104. M. H. Yang, K. B. K. Teo, W. I. Milne, and D. G. Hasko, “Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts,” Appl. Phys. Lett. 87, 253116 (2005).
http://dx.doi.org/10.1063/1.2149991
105.
105. C. G. Lu, L. An, Q. A. Fu, J. Liu, H. Zhang, and J. Murduck, “Schottky diodes from asymmetric metal-nanotube contacts,” Appl. Phys. Lett. 88, 133501 (2006).
http://dx.doi.org/10.1063/1.2190707
106.
106. B. S. Xu, “Prospects and research progress in nano onion-like fullerenes,” New Carbon Mater. 23, 289301 (2008).
http://dx.doi.org/10.1016/S1872-5805(09)60001-9
107.
107. S. M. Hou, C. G. Tao, G. M. Zhang, X. Y. Zhao, Z. Q. Xue, Z. J. Shi, and Z. N. Gu, “Ultrahigh vacuum scanning probe microscopy studies of carbon onions,” Physica E 9, 300304 (2001).
http://dx.doi.org/10.1016/S1386-9477(00)00273-3
108.
108. M. Chhowalla, H. Wang, N. Sano, K. B. K. Teo, S. B. Lee, and G. A. J. Amaratunga, “Carbon onions: carriers of the 217.5 nm interstellar absorption feature,” Phys. Rev. Lett. 90, 155504 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.155504
109.
109. L. Henrard, F. Malengreau, P. Rudolf, K. Hevesi, R. Caudano, P. Lambin, and T. Cabioc’h, “Electron-energy-loss spectroscopy of plasmon excitations in concentric-shell fullerenes,” Phys. Rev. B 59, 58325836 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5832
110.
110. T. Pichler, M. Knupfer, M. S. Golden, J. Fink, and T. Cabioc’h, “Electronic structure and optical properties of concentric-shell fullerenes from electron-energy-loss spectroscopy in transmission,” Phys. Rev. B 63, 155415 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.155415
111.
111. G. H. Lee, S. H. Huh, J. W. Jeong, and H. C. Ri, “Excellent magnetic properties of fullerene encapsulated ferromagnetic nanoclusters,” J. Magn. Magn. Mater. 246, 404411 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00113-0
112.
112. A. Y. Ge, B. S. Xu, X. M. Wang, T. B. Li, P. D. Han, and X. G. Liu, “Study on electromagnetic property of nano onion-like fullerenes,” Acta Phys.-Chim. Sin. 22, 203208 (2006).
http://dx.doi.org/10.1016/S1872-1508(06)60056-9
113.
113. N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K. B. K. Teo, G. A. J. Amaratunga, and K. Iimura, “Properties of carbon onions produced by an arc discharge in water,” J. Appl. Phys. 92, 27832788 (2002).
http://dx.doi.org/10.1063/1.1498884
114.
114. C. Portet, G. Yushin, and Y. Gogotsi, “Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors,” Carbon 45, 25112518 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.08.024
115.
115. S. A. Maksimenko, V. N. Rodionova, G. Y. Slepyan, V. A. Karpovich, O. Shenderova, J. Walsh, V. L. Kuznetsov, I. N. Mazov, S. I. Moseenkov, A. V. Okotrub, and P. Lambin, “Attenuation of electromagnetic waves in onion-like carbon composites,” Diamond Relat. Mater. 16, 12311235 (2007).
http://dx.doi.org/10.1016/j.diamond.2006.11.025
116.
116. X. W. Yang, J. J. Guo, X. M. Wang, X. G. Liu, and B. S. Xu, “Study on characterization and growth mechanism of Pt/onion-like fullerenes catalyst,” Acta Phys.-Chim. Sin. 22, 967971 (2006).
http://dx.doi.org/10.1016/S1872-1508(06)60042-9
117.
117. Y. L. Yao, X. M. Wang, J. J. Guo, X. W. Yang, and B. S. Xu, “Tribological property of onion-like fullerenes as lubricant additive,” Mater. Lett. 62, 25242527 (2008).
http://dx.doi.org/10.1016/j.matlet.2007.12.056
118.
118. E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336340 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00557-2
119.
119. J. M. C. Moreno and M. Yoshimura, “Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon,” J. Am. Chem. Soc. 123, 741742 (2001).
http://dx.doi.org/10.1021/ja003008h
120.
120. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, “Raman micro spectroscopy of soot and related carbonaceous materials: spectral analysis and structural information,” Carbon 43, 17311742 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.02.018
121.
121. M. Knauer, M. Carrara, D. Rothe, R. Niessner, and N. P. Ivleva, “Changes in structure and reactivity of soot during oxidation and gasification by oxygen, studied by micro-Raman spectroscopy and temperature programmed oxidation,” Aerosol Sci. Technol. 43, 18 (2009).
http://dx.doi.org/10.1080/02786820802422250
122.
122. R. L. V. Wal and A. J. Tomasek, “Soot nanostructure: dependence upon synthesis conditions,” Combust. Flame 136, 129140 (2004).
http://dx.doi.org/10.1016/j.combustflame.2003.09.008
http://aip.metastore.ingenta.com/content/lia/journal/jla/24/4/10.2351/1.4716046
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

A schematic diagram of laser direct writing of graphene patterns on a nickel foil.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Optical micrograph of a graphene pattern on a nickel foil; (b) corresponding Raman spectrum at point-A. Raman intensity mapping of (c) G-band (1582 cm−1) and (d) 2D-band (2691 cm−1) (wavelength = 514.5 nm).

Image of FIG. 3.

Click to view

FIG. 3.

Optical micrographs of (a) transferred, (b) multilayer, (c) double-layer, and (d) single-layer graphene patterns on an SiO2/Si wafer. (e) Typical Raman spectra of graphene patterns for multilayer, double-layer, and single-layer graphene patterns. (f) Fabrication window of different layers of graphene pattern with respect to the gas pressures and scan speeds.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Optical micrograph of a transferred single-layer graphene on gold electrodes. (b) I–V characteristic of the single-layer graphene pattern. (c) SEM image of a multilayer graphene pattern. Inset shows an optical micrograph of the multilayer graphene pattern. (d) Sheet resistances of a graphene pattern with respect to the scan speeds.

Image of FIG. 5.

Click to view

FIG. 5.

(a) A schematic diagram of the LCVD fabrication process for growing CNTs, and (b) a schematic diagram of a CNT-integrated bridge structure.

Image of FIG. 6.

Click to view

FIG. 6.

Typical SEM images of a CNT-bridge structure: (a) top-view and (b) side-view, and (c) corresponding Raman spectrum of the tube.

Image of FIG. 7.

Click to view

FIG. 7.

(a) An SEM image showing the electrode pattern containing two pairs of tip-shaped electrodes; (b) and (c) SEM images of the squared regions in (a), showing the CNT-integrated bridge structures; (d) IV measurement of the device; and (e) Raman spectrum of the CNTs.

Image of FIG. 8.

Click to view

FIG. 8.

(a) An SEM image showing the electrode pattern containing four pairs of tip-shaped electrodes; (b) and (c) SEM images of the squared regions in (a), showing the CNT-integrated bridge structures; (d) IV measurement of the device; and (e) Raman spectrum of the CNTs.

Image of FIG. 9.

Click to view

FIG. 9.

Electrical transportation characteristics of a typical device containing multiple CNT-bridges: (a) I dsV ds curves and (b) I dsV g curves.

Image of FIG. 10.

Click to view

FIG. 10.

(a) An SEM image showing the electrode pattern containing cross-shaped electrodes; (b) and (c) SEM images of the squared regions in (a), showing the CNT-integrated bridge structures; (d) IV measurement of the device; and (e) Raman spectrum of the CNTs.

Image of FIG. 11.

Click to view

FIG. 11.

Electrical field distribution (a) and heat distribution (b) within the electrodes with the laser beam polarization normal to the electrode tip pair; electrical field distribution (c) and heat distribution (d) within the electrodes with the laser beam polarization parallel to the electrode tip pair.

Image of FIG. 12.

Click to view

FIG. 12.

I dV g and I dV ds curves of the original sample before [(a) and (b)] and after [(c) and (d)] laser irradiation, respectively, with a laser wavelength of 2 μm and irradiation duration of 20 s.

Image of FIG. 13.

Click to view

FIG. 13.

SEM images of the CNT sample before [(a) and (c)] and after [(b) and (d)] laser irradiation. Each number marks to the same CNT before and after laser irradiation.

Image of FIG. 14.

Click to view

FIG. 14.

(a) An optical image showing an electrode with a circle indicating the OPO laser spot. (b)–(d) SEM images collected at the indicated regions. (e) Raman spectra obtained from the selected regions corresponding to the SEM images; the insets are the close-up views of the RBM peaks.

Image of FIG. 15.

Click to view

FIG. 15.

TEM image of a single-walled CNT grown with a descending temperature profile. The close-up views, (1–5), corresponding to the labeled areas of the tube, show about 0.5 nm variation in the diameter from one end to the other.

Image of FIG. 16.

Click to view

FIG. 16.

(a) SEM image of a single-walled CNT bridging the Mo electrodes. (b) The corresponding Raman spectra at different locations on the tube shown in (a): RBM peaks shift from higher to lower frequency at locations 1–4, indicating increments in the tube diameter. (c) The schematic representation of the tube structure. (d) The typical I–V characteristics showing a diodelike behavior of the device with an inset indicating the expected band diagram.

Image of FIG. 17.

Click to view

FIG. 17.

(a) SEM image of a single-walled CNT bridging the Mo electrodes. (b) The corresponding Raman spectra having constant RBM peaks frequency along the tube indicate a uniform diameter along the tube axis. (c) The schematic representation of the structure. (d) I–V characteristics showing almost symmetrical conductance in both directions with an inset indicating the expected band diagram.

Image of FIG. 18.

Click to view

FIG. 18.

Illustration of the experimental setup for the laser-assisted combustion synthesis of CNO.

Image of FIG. 19.

Click to view

FIG. 19.

Photographs of ethylene–oxygen flames: (a) without laser excitation, (b) excited at 10.333 μm, and (c) excited at 10.532 μm. (The insets show molecular vibration under the excitation conditions.) TEM images of CNOs grown (d) without laser excitation and with laser excitations at (e) 10.333 and (f) 10.532 μm. (g) Raman spectra of CNOs grown without laser excitation and with laser excitations at 10.333 and 10.532 μm. (The inset shows the magnified view of the second-order Raman spectra.) (h) Typical curve fitting of a first-order Raman spectrum.

Image of FIG. 20.

Click to view

FIG. 20.

TEM images of CNOs grown (a) without laser excitation and with different laser powers of (b) 400, (c) 600, and (d) 1000 W at 10.532 μm. (e) Raman spectra of CNOs grown with different laser powers. (The inset shows the magnified view of the second-order Raman spectra.) (f) G-band FWHM and R3 of CNOs as functions of the laser power.

Image of FIG. 21.

Click to view

FIG. 21.

The laser powers absorbed by the combustion flame at the wavelengths of 10.333 and 10.532 μm as functions of the incident laser power.

Loading

Article metrics loading...

/content/lia/journal/jla/24/4/10.2351/1.4716046
2012-07-16
2014-04-19

Abstract

An overview of laser-assisted techniques developed in our group for fabricatingcarbonnanostructures, including two-dimensional graphene, one-dimensional carbon nanotubes, and zero-dimensional carbon nanoonions, is presented. Unique laser-material interactions provide versatile possibilities in fabricatingcarbonnanostructures, including localized heating, direct laser writing, tip-enhanced optical near-field effect,polarization, ablation, resonant excitation, precise energy delivery, and mask-free direct patterning. Rapid single-step fabrication of graphene patterns was achieved using laser directing writing. Parallel integration of single-walled carbon nanotubes was realized by making use of tip-enhanced optical near-field effect. High-quality carbon nanoonions were obtained through laser resonant excitation of precursor molecules.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/24/4/1.4716046.html;jsessionid=rd6lmhrf0p31.x-aip-live-06?itemId=/content/lia/journal/jla/24/4/10.2351/1.4716046&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Laser-assisted nanofabrication of carbon nanostructures
http://aip.metastore.ingenta.com/content/lia/journal/jla/24/4/10.2351/1.4716046
10.2351/1.4716046
SEARCH_EXPAND_ITEM