1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Synthesis of hybrid microgels by coupling of laser ablation and polymerization in aqueous medium
Rent:
Rent this article for
Access full text Article
/content/lia/journal/jla/24/4/10.2351/1.4730803
1.
1. B. T. Vallee and K. H. Falchuk, “ The biochemical basis of zinc physiology,” Physiol. Rev. 73, 79118 (1993).
http://dx.doi.org/10.2466/pr0.1993.73.1.79
2.
2. N. M. Morellini, N. L. Giles, S. Rea, K. F. Adcroft, S. Falder, C. E. King, S. A. Dunlop, L. D. Beazley et al.Exogenous metallothionein-IIA promotes accelerated healing after a burn wound,” Wound Repair Regen. 16, 682690 (2008).
http://dx.doi.org/10.1111/j.1524-475X.2008.00418.x
3.
3. M.-J. Richard, P. Guiraud, M.-T. Leccia, J.-C. Beani, and A. Favier, “ Effect of zinc supplementation on resistance of cultured human skin fibroblasts toward oxidant stress,” Biol. Trace Elem. Res. 37, 187199 (1993).
http://dx.doi.org/10.1007/BF02783794
4.
4. M. M. Berger and A. Shenkin, “ Trace element requirements in critically ill burned patients,” J. Trace Elem. Med. Biol. 21, 4448 (2007).
http://dx.doi.org/10.1016/j.jtemb.2007.09.013
5.
5. M. S. Agren and U. Mirastschijski, “ The release of zinc ions from and cytocompatibility of two zinc oxide dressings,” J. Wound Care 13, 367369 (2004).
6.
6. Z. Yang and C. Xie, “ Zn2+ release from zinc and zinc oxide particles in simulated uterine solution,” Colloids Surf., B 47, 140145 (2006).
http://dx.doi.org/10.1016/j.colsurfb.2005.12.007
7.
7. A. B. G. Lansdown, “ Influence of zinc oxide in the closure of open skin wounds,” Int. J. Cosmetic. Sci. 15, 8385 (1993).
http://dx.doi.org/10.1111/j.1467-2494.1993.tb00072.x
8.
8. P. Tarnow, M. Agren, H. Steenfos, and J. O. Jansson, “ Topical zinc-oxide treatment increase endogeneous gene-expression of insulin-like growth-factor-i in granulation-tissue from porcine wounds,” Scand. J. Plast. Reconstr. Surg. Hand Surg. 28, 255259 (1994).
http://dx.doi.org/10.3109/02844319409022008
9.
9. R. Pelton, “ Temperature-sensitive aqueous microgels,” Adv. Colloid Interface Sci. 85, 133 (2000).
http://dx.doi.org/10.1016/S0001-8686(99)00023-8
10.
10. K. Tauer, D. Gau, S. Schulze, A. Völkel, and R. Dimova, “ Thermal property changes of poly(N-isopropylacrylamide) microgel particles and block copolymers,” Colloid Polym. Sci. 287, 299312 (2009).
http://dx.doi.org/10.1007/s00396-008-1984-x
11.
11. T. Hoare and R. Pelton, “ Characterizing charge and crosslinker distributions in polyelectrolyte microgels,” Curr. Opin. Colloid Interface Sci. 13, 413428 (2008).
http://dx.doi.org/10.1016/j.cocis.2008.03.004
12.
12. B. H. Tan and K. C. Tam, “ Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems,” Adv. Colloid Interface Sci. 136, 2544 (2008).
http://dx.doi.org/10.1016/j.cis.2007.07.002
13.
13. M. Karg and T. Hellweg, “ New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: Properties and advances in characterisation," Curr. Opin. Colloid Interface Sci. 14, 438450 (2009).
14.
14. J. Zhang, S. Xu, and E. Kumacheva, “ Polymer microgels: Reactors for semiconductor, metal, and magnetic nanoparticles,” J. Am. Chem. Soc. 126, 79087914 (2004).
http://dx.doi.org/10.1021/ja031523k
15.
15. A. Z. Pich and H.-J. P. Adler, “ Composite aqueous microgels: An overview of recent advances in synthesis, characterization and application,” Polym. Int. 56, 291307 (2007).
http://dx.doi.org/10.1002/pi.2142
16.
16. J. K. Oh, R. Drumright, D. J. Siegwart, and K. Matyjaszewski, “ The development of microgels/nanogels for drug delivery applications,” Prog. Polym. Sci. 33, 448477 (2008).
http://dx.doi.org/10.1016/j.progpolymsci.2008.01.002
17.
17. A. V. Kabanov and S. V. Vinogradov, “ Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities,” Angew. Chem., Int. Ed. 48, 54185429 (2009).
http://dx.doi.org/10.1002/anie.200900441
18.
18. B. R. Saunders, N. Laajam, E. Daly, S. Teow, X. Hu, and R. Stepto, “ Microgels: From responsive polymer colloids to biomaterials,” Adv. Colloid Interface Sci. 147–148, 251262 (2009).
http://dx.doi.org/10.1016/j.cis.2008.08.008
19.
19. S. Nayak and L. A. Lyon, “ Soft nanotechnology with soft nanoparticles,” Angew. Chem., Int. Ed. 44, 76867708 (2005).
http://dx.doi.org/10.1002/anie.200501321
20.
20. J. Hu, S. Yu, and P. Yao, “ Stable amphoteric nanogels made of ovalbumin and ovotransferrin via self-assembly,” Langmuir 23, 63586364 (2007).
http://dx.doi.org/10.1021/la063419x
21.
21. X. Zhou, B. Liu, X. Yu, X. Zha, X. Zhang, Y. Chen, X. Wang, Y. Jin et al., “ Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine,” J. Controlled Release 121, 200207 (2007).
http://dx.doi.org/10.1016/j.jconrel.2007.05.018
22.
22. S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, and G. M. Whitesides, “ Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition,” Angew. Chem., Int. Ed. 44, 724728 (2005).
http://dx.doi.org/10.1002/anie.200462226
23.
23. K.-F. Arndt, T. Schmidt, and R. Reichelt, “ Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy radiation,” Polymer 42, 67856791 (2001).
http://dx.doi.org/10.1016/S0032-3861(01)00164-1
24.
24. T. Narita, K. Terao, T. Dobashi, N. Nagasawa, and F. Yoshii, “ Preparation and characterization of core-shell nanoparticles hardened by gamma-ray,” Colloids Surf., B 38, 187190 (2004).
http://dx.doi.org/10.1016/j.colsurfb.2004.02.021
25.
25. A. Henke, S. Kadlubowski, P. Ulanski, J. M. Rosiak, and K.-F. Arndt, “ Radiation-induced cross-linking of polyvinylpyrrolidone-poly(acrylic acid) complexes,” Nucl. Instrum. Methods Phys. Res. B 236, 391398 (2005).
http://dx.doi.org/10.1016/j.nimb.2005.04.003
26.
26. F. Atyabi, F. Talaie, and R. Dinarvand, “ Thiolated chitosan nanoparticles as an oral delivery system for Amikacin: In vitro and ex vivo evaluations,” J. Nanosci. Nanotechnol. 9, 45934603 (2009).
http://dx.doi.org/10.1166/jnn.2009.1090
27.
27. S. Shu, X. Wang, X. Zhang, X. Zhang, Z. Wang, and C. Li, “ Disulfide cross-linked biodegradable polyelectrolyte nanoparticles for the oral delivery of protein drugs,” New J. Chem. 33, 18821887 (2009).
http://dx.doi.org/10.1039/b903208h
28.
28. K. H. Bae, H. Mok, and T. G. Park, “ Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death,” Biomaterials 29, 33763383 (2008).
http://dx.doi.org/10.1016/j.biomaterials.2008.04.035
29.
29. J. Groll, S. Singh, K. Albrecht, and M. Moeller, “ Biocompatible and degradable nanogels via oxidation reactions of synthetic thiomers in inverse miniemulsion,” J. Polym. Sci., Part A: Polym. Chem. 47, 55435549 (2009).
http://dx.doi.org/10.1002/pola.23595
30.
30. Z. Meng, M. H. Smith, and L. A. Lyon, “ Temperature-programmed synthesis of micron-sized multi-responsive microgels,” Colloid Polym. Sci. 287, 277285 (2009).
http://dx.doi.org/10.1007/s00396-008-1986-8
31.
31. I. Dimitrov, B. Trzebicka, A. H. E. Müller, A. Dworak, and C. B. Tsvetanov, “ Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities,” Prog. Polym. Sci. 32, 12751343 (2007).
http://dx.doi.org/10.1016/j.progpolymsci.2007.07.001
32.
32. S. Lally, R. Bird, T. J. Freemont, and B. R. Saunders, “ Microgels containing methacrylic acid: Effects of composition on pH-triggered swelling and gelation behaviours,” Colloid Polymer Sci. 287, 335343 (2009).
http://dx.doi.org/10.1007/s00396-008-1994-8
33.
33. M. Keerl and W. Richtering, “ Synergistic depression of volume phase transition temperature in copolymer microgels,” Colloid Polymer Sci. 285, 471474 (2007).
http://dx.doi.org/10.1007/s00396-006-1605-5
34.
34. M. Bradley and B. Vincent, “ Poly(vinylpyridine) core/poly(N-isopropylacrylamide) shell microgel particles: Their characterization and the uptake and release of an anionic surfactant,” Langmuir 24, 24212425 (2008).
http://dx.doi.org/10.1021/la703327v
35.
35. K. Landfester, M. Willert, and M. Antonietti, “ Preparation of polymer particles in nonaqueous direct and inverse miniemulsions,” Macromolecules 33, 23702376 (2000).
http://dx.doi.org/10.1021/ma991782n
36.
36. J. K. Oh, F. Perineau, and K. Matyjaszewski, “ Preparation of nanoparticles of well-controlled water-soluble homopolymers and block copolymers using an inverse miniemulsion ATRP,” Macromolecules 39, 80038010 (2006).
http://dx.doi.org/10.1021/ma061698p
37.
37. J. K. Oh, C. Tang, H. Gao, N. V. Tsarevsky, and K. Matyjaszewski, “ Inverse miniemulsion ATRP: A new method for synthesis and functionalization of well-defined Water-soluble/cross-linked polymeric particles,” J. Am. Chem. Soc. 128, 55785584 (2006).
http://dx.doi.org/10.1021/ja060586a
38.
38. V. V. A. Fernandez, N. Tepale, J. C. Sánchez-Díaz, E. Mendizábal, J. E. Puig, and J. F. A. Soltero, “ Thermoresponsive nanostructured poly(N-isopropylacrylamide) hydrogels made via inverse microemulsion polymerization,” Colloid Polym. Sci. 284, 387395 (2006).
http://dx.doi.org/10.1007/s00396-005-1395-1
39.
39. D. Gao, H. Xu, M. A. Philbert, and R. Kopelman, “ Ultrafine hydrogel nanoparticles: Synthetic approach and therapeutic application in living cells,” Angew. Chem., Int. Ed. 46, 22242227 (2007).
http://dx.doi.org/10.1002/anie.200603927
40.
40. M. Karg and T. Hellweg, “ Smart inorganic/organic hybrid microgels: Synthesis and characterisation,” J. Mater. Chem. 19, 87148727 (2009).
http://dx.doi.org/10.1039/b820292n
41.
41. A. Pich, Y. Lu, V. Boyko, S. Richter, K.-F. Arndt, and H.-J. P. Adler, “ Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels. 3. Incorporation of polypyrrole by selective microgel swelling in ethanol–water mixtures,” Polymer 45, 10791087 (2004).
http://dx.doi.org/10.1016/j.polymer.2003.12.019
42.
42. J. Rubio Retama, E. López Cabarcos, D. Mecerreyes, and B. López-Ruiz, “ Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase,” Biosens. Bioelectron. 20, 11111117 (2004).
http://dx.doi.org/10.1016/j.bios.2004.05.018
43.
43. Y. Lu, Y. Mei, M. Drechsler, and M. Ballauff, “ Thermosensitive core–shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks,” Angew. Chem., Int. Ed. 45, 813816 (2006).
http://dx.doi.org/10.1002/anie.200502731
44.
44. M. Karg, Y. Lu, E. Carbo-Argibay, I. Pastoriza-Santos, J. Perez-Juste, L. M. Liz-Marzan, and T. Hellweg, “ Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-coallylacetic acid) microgels: Temperature- and pH-tunable plasmon resonance,” Langmuir 25, 31633167 (2009).
http://dx.doi.org/10.1021/la803458j
45.
45. C. Menager, O. Sandre, J. Mangili, and V. Cabuil, “ Preparation and swelling of hydrophilic magnetic microgels,” Polymer 45, 24752481 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.02.018
46.
46. C. Bai, Y. Fang, Y. Zhang, and B. Chen, “ Synthesis of novel metal sulfide−polymer composite microspheres exhibiting patterned surface structures,” Langmuir 20, 263265 (2004).
http://dx.doi.org/10.1021/la035561t
47.
47. A. Pich, J. Hain, Y. Lu, V. Boyko, Y. Prots, and H.-J. Adler, “ Hybrid microgels with ZnS inclusions,” Macromolecules 38, 66106619 (2005).
http://dx.doi.org/10.1021/ma0505272
48.
48. N. Nassif, N. Gehrke, N. Pinna, N. Shirshova, K. Tauer, M. Antonietti, and H. Cölfen, “ Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway,” Angew. Chem., Int. Ed. 44, 60046009 (2005).
http://dx.doi.org/10.1002/anie.200500081
49.
49. G. Zhang, D. Wang, Z.-Z. Gu, J. Hartmann, and H. Möhwald, “ Two-dimensional non-close-packing arrays derived from s-assembly of biomineralized hydrogel spheres and their patterning applications,” Chem. Mater. 17, 52685274 (2005).
http://dx.doi.org/10.1021/cm050414x
50.
50. Y. Gong, M. Gao, D. Wang, and H. Möhwald, “ Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding: Toward fluorescent microspheres with temperature-responsive properties,” Chem. Mater. 17, 26482653 (2005).
http://dx.doi.org/10.1021/cm047932c
51.
51. A. Pich, F. Zhang, L. Shen, S. Berger, O. Ornatsky, V. Baranov, and M. A. Winnik, “ Biocompatible hybrid nanogels,” Small 4, 21712175 (2008).
http://dx.doi.org/10.1002/smll.200801159
52.
52. S. Barcikowski, F. Devesa, and K. Moldenhauer, “ Impact and structure of literature on nanoparticle generation by laser ablation in liquids,” J. Nanopart. Res. 11, 18831893 (2009).
http://dx.doi.org/10.1007/s11051-009-9765-0
53.
53. N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, “ Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology 20, 445603 (2009).
http://dx.doi.org/10.1088/0957-4484/20/44/445603
54.
54. C. L. Sajti, R. Sattari, B. N. Chichkov, S. Barcikowski, “ Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid,” J. Phys. Chem. C 114, 24212427 (2010).
http://dx.doi.org/10.1021/jp906960g
55.
55. P. Wagener, A. Schwenke, B. N. Chichkov, and S. Barcikowski, “ Pulsed laser ablation of zinc in tetrahydrofuran: Bypassing the cavitation bubble,” J. Phys. Chem. C 114, 76187625 (2010).
http://dx.doi.org/10.1021/jp911243a
56.
56. D. D. van’t Zand, P. Nachev, R. Rosenfeld, P. Wagener, A. Pich, D. Klee, and S. Barcikowski, “ Nanocomposite fibre fabrication via in situ monomer grafting and bonding on laser generated nanoparticles,” J. Laser Micro/Nanoeng. 7, 2127 (2012).
http://dx.doi.org/10.2961/jlmn.2012.01.0004
57.
57. M. Agrawal, A. Pich, S. Gupta, N. E. Zafeiropoulos, J. Rubio-Retama, F. Simon, and M. Stamm, “ Temperature sensitive hybrid microgels loaded with zno nanoparticles,” J. Mater. Chem. 18, 25812586 (2008).
http://dx.doi.org/10.1039/b802102c
58.
58. J. C. Hurt and C. J. Phillips, “ Structural role of zinc oxide in glasses in the system Na2OZnO-SiO2,” J. Am. Ceram. Soc. 53, 269273 (1970).
http://dx.doi.org/10.1111/j.1151-2916.1970.tb12091.x
59.
59. S. C. Pillai, J. M. Kelly, D. E. McCormack, P. O’Brien, and R. Ramesh, “ The effect of processing conditions on varistors prepared from nanocrystalline ZnO,” J. Mater. Chem. 13, 25862590 (2003).
http://dx.doi.org/10.1039/b306280e
60.
60. V. Boyko, A. Pich, Y. Lu, S. Richter, K.-F. Arndt, and H.-J. P. Adler, “ Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 1—Synthesis and Characterization,” Polymer 44, 78217827 (2003).
http://dx.doi.org/10.1016/j.polymer.2003.09.037
61.
61. M.-T. Leccia, M.-J. Richard, A. Favier, and J.-C. B’Eani, “ Zinc protects against ultraviolet A1-induced DNA damage and apoptosis in cultured human fibroblasts,” Biol. Trace Elem. Res. 69, 177190 (1999).
http://dx.doi.org/10.1007/BF02783870
62.
62. E. Borenfreund and Babich, “In vitro cytotoxicity of heavy metals, acrylamide, and organotin salts to neural cells and fibroblasts,” Cell Biol. Toxicol. 3, 6373 (1987).
http://dx.doi.org/10.1007/BF00117826
http://aip.metastore.ingenta.com/content/lia/journal/jla/24/4/10.2351/1.4730803
Loading
/content/lia/journal/jla/24/4/10.2351/1.4730803
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/lia/journal/jla/24/4/10.2351/1.4730803
2012-07-16
2014-08-22

Abstract

Loading microgels with bioactive nanoparticles (NPs) often requires multiple synthesis and purification steps, and organic solvents or precursors that are difficult to remove from the gel. Hence, a fast and aqueous synthesis procedure would facilitate the synthesis of inorganic–organic hybrid microgels. Two microgel compounds were hybridized with laser-generated zinc oxide (ZnO) NPs prepared in a single-step procedure. ZnO NPs were formed by laser ablation in liquid, while the polymermicrogels were synthesized in-situ inside the ablation chamber. Further, the authors report the preparation of two different microgel systems. The first one was produced without the use of chemical initiator forming hydrogels with ZnO NPs and diffuse morpholgy. Typical microgelcolloids were also synthesized via a conventional chemical method in a preheated reaction chamber. The existence of microgelcolloids partially loaded with ZnO NPs was confirmed in a transmission electron microscopy investigation. Fourier transform infrared spectroscopic measurements and dynamic light scattering verify the formation of polymercolloids. These initial results indicate the application potential of laser ablation in microgel precursor solution for the fabrication of polymeric carriers for inorganic nanoparticles. Preliminary biological tests using zinc chloride demonstrated negative dose effects on primary cell culture with zinc concentrations above 200 μM but no noticeable influence at 100 μM.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/24/4/1.4730803.html;jsessionid=2ccnqc20krjdl.x-aip-live-02?itemId=/content/lia/journal/jla/24/4/10.2351/1.4730803&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla

Most read this month

Article
content/lia/journal/jla
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Synthesis of hybrid microgels by coupling of laser ablation and polymerization in aqueous medium
http://aip.metastore.ingenta.com/content/lia/journal/jla/24/4/10.2351/1.4730803
10.2351/1.4730803
SEARCH_EXPAND_ITEM