Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. T. Vallee and K. H. Falchuk, “ The biochemical basis of zinc physiology,” Physiol. Rev. 73, 79118 (1993).
2. N. M. Morellini, N. L. Giles, S. Rea, K. F. Adcroft, S. Falder, C. E. King, S. A. Dunlop, L. D. Beazley et al.Exogenous metallothionein-IIA promotes accelerated healing after a burn wound,” Wound Repair Regen. 16, 682690 (2008).
3. M.-J. Richard, P. Guiraud, M.-T. Leccia, J.-C. Beani, and A. Favier, “ Effect of zinc supplementation on resistance of cultured human skin fibroblasts toward oxidant stress,” Biol. Trace Elem. Res. 37, 187199 (1993).
4. M. M. Berger and A. Shenkin, “ Trace element requirements in critically ill burned patients,” J. Trace Elem. Med. Biol. 21, 4448 (2007).
5. M. S. Agren and U. Mirastschijski, “ The release of zinc ions from and cytocompatibility of two zinc oxide dressings,” J. Wound Care 13, 367369 (2004).
6. Z. Yang and C. Xie, “ Zn2+ release from zinc and zinc oxide particles in simulated uterine solution,” Colloids Surf., B 47, 140145 (2006).
7. A. B. G. Lansdown, “ Influence of zinc oxide in the closure of open skin wounds,” Int. J. Cosmetic. Sci. 15, 8385 (1993).
8. P. Tarnow, M. Agren, H. Steenfos, and J. O. Jansson, “ Topical zinc-oxide treatment increase endogeneous gene-expression of insulin-like growth-factor-i in granulation-tissue from porcine wounds,” Scand. J. Plast. Reconstr. Surg. Hand Surg. 28, 255259 (1994).
9. R. Pelton, “ Temperature-sensitive aqueous microgels,” Adv. Colloid Interface Sci. 85, 133 (2000).
10. K. Tauer, D. Gau, S. Schulze, A. Völkel, and R. Dimova, “ Thermal property changes of poly(N-isopropylacrylamide) microgel particles and block copolymers,” Colloid Polym. Sci. 287, 299312 (2009).
11. T. Hoare and R. Pelton, “ Characterizing charge and crosslinker distributions in polyelectrolyte microgels,” Curr. Opin. Colloid Interface Sci. 13, 413428 (2008).
12. B. H. Tan and K. C. Tam, “ Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems,” Adv. Colloid Interface Sci. 136, 2544 (2008).
13. M. Karg and T. Hellweg, “ New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: Properties and advances in characterisation," Curr. Opin. Colloid Interface Sci. 14, 438450 (2009).
14. J. Zhang, S. Xu, and E. Kumacheva, “ Polymer microgels: Reactors for semiconductor, metal, and magnetic nanoparticles,” J. Am. Chem. Soc. 126, 79087914 (2004).
15. A. Z. Pich and H.-J. P. Adler, “ Composite aqueous microgels: An overview of recent advances in synthesis, characterization and application,” Polym. Int. 56, 291307 (2007).
16. J. K. Oh, R. Drumright, D. J. Siegwart, and K. Matyjaszewski, “ The development of microgels/nanogels for drug delivery applications,” Prog. Polym. Sci. 33, 448477 (2008).
17. A. V. Kabanov and S. V. Vinogradov, “ Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities,” Angew. Chem., Int. Ed. 48, 54185429 (2009).
18. B. R. Saunders, N. Laajam, E. Daly, S. Teow, X. Hu, and R. Stepto, “ Microgels: From responsive polymer colloids to biomaterials,” Adv. Colloid Interface Sci. 147–148, 251262 (2009).
19. S. Nayak and L. A. Lyon, “ Soft nanotechnology with soft nanoparticles,” Angew. Chem., Int. Ed. 44, 76867708 (2005).
20. J. Hu, S. Yu, and P. Yao, “ Stable amphoteric nanogels made of ovalbumin and ovotransferrin via self-assembly,” Langmuir 23, 63586364 (2007).
21. X. Zhou, B. Liu, X. Yu, X. Zha, X. Zhang, Y. Chen, X. Wang, Y. Jin et al., “ Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine,” J. Controlled Release 121, 200207 (2007).
22. S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, and G. M. Whitesides, “ Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition,” Angew. Chem., Int. Ed. 44, 724728 (2005).
23. K.-F. Arndt, T. Schmidt, and R. Reichelt, “ Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy radiation,” Polymer 42, 67856791 (2001).
24. T. Narita, K. Terao, T. Dobashi, N. Nagasawa, and F. Yoshii, “ Preparation and characterization of core-shell nanoparticles hardened by gamma-ray,” Colloids Surf., B 38, 187190 (2004).
25. A. Henke, S. Kadlubowski, P. Ulanski, J. M. Rosiak, and K.-F. Arndt, “ Radiation-induced cross-linking of polyvinylpyrrolidone-poly(acrylic acid) complexes,” Nucl. Instrum. Methods Phys. Res. B 236, 391398 (2005).
26. F. Atyabi, F. Talaie, and R. Dinarvand, “ Thiolated chitosan nanoparticles as an oral delivery system for Amikacin: In vitro and ex vivo evaluations,” J. Nanosci. Nanotechnol. 9, 45934603 (2009).
27. S. Shu, X. Wang, X. Zhang, X. Zhang, Z. Wang, and C. Li, “ Disulfide cross-linked biodegradable polyelectrolyte nanoparticles for the oral delivery of protein drugs,” New J. Chem. 33, 18821887 (2009).
28. K. H. Bae, H. Mok, and T. G. Park, “ Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death,” Biomaterials 29, 33763383 (2008).
29. J. Groll, S. Singh, K. Albrecht, and M. Moeller, “ Biocompatible and degradable nanogels via oxidation reactions of synthetic thiomers in inverse miniemulsion,” J. Polym. Sci., Part A: Polym. Chem. 47, 55435549 (2009).
30. Z. Meng, M. H. Smith, and L. A. Lyon, “ Temperature-programmed synthesis of micron-sized multi-responsive microgels,” Colloid Polym. Sci. 287, 277285 (2009).
31. I. Dimitrov, B. Trzebicka, A. H. E. Müller, A. Dworak, and C. B. Tsvetanov, “ Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities,” Prog. Polym. Sci. 32, 12751343 (2007).
32. S. Lally, R. Bird, T. J. Freemont, and B. R. Saunders, “ Microgels containing methacrylic acid: Effects of composition on pH-triggered swelling and gelation behaviours,” Colloid Polymer Sci. 287, 335343 (2009).
33. M. Keerl and W. Richtering, “ Synergistic depression of volume phase transition temperature in copolymer microgels,” Colloid Polymer Sci. 285, 471474 (2007).
34. M. Bradley and B. Vincent, “ Poly(vinylpyridine) core/poly(N-isopropylacrylamide) shell microgel particles: Their characterization and the uptake and release of an anionic surfactant,” Langmuir 24, 24212425 (2008).
35. K. Landfester, M. Willert, and M. Antonietti, “ Preparation of polymer particles in nonaqueous direct and inverse miniemulsions,” Macromolecules 33, 23702376 (2000).
36. J. K. Oh, F. Perineau, and K. Matyjaszewski, “ Preparation of nanoparticles of well-controlled water-soluble homopolymers and block copolymers using an inverse miniemulsion ATRP,” Macromolecules 39, 80038010 (2006).
37. J. K. Oh, C. Tang, H. Gao, N. V. Tsarevsky, and K. Matyjaszewski, “ Inverse miniemulsion ATRP: A new method for synthesis and functionalization of well-defined Water-soluble/cross-linked polymeric particles,” J. Am. Chem. Soc. 128, 55785584 (2006).
38. V. V. A. Fernandez, N. Tepale, J. C. Sánchez-Díaz, E. Mendizábal, J. E. Puig, and J. F. A. Soltero, “ Thermoresponsive nanostructured poly(N-isopropylacrylamide) hydrogels made via inverse microemulsion polymerization,” Colloid Polym. Sci. 284, 387395 (2006).
39. D. Gao, H. Xu, M. A. Philbert, and R. Kopelman, “ Ultrafine hydrogel nanoparticles: Synthetic approach and therapeutic application in living cells,” Angew. Chem., Int. Ed. 46, 22242227 (2007).
40. M. Karg and T. Hellweg, “ Smart inorganic/organic hybrid microgels: Synthesis and characterisation,” J. Mater. Chem. 19, 87148727 (2009).
41. A. Pich, Y. Lu, V. Boyko, S. Richter, K.-F. Arndt, and H.-J. P. Adler, “ Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels. 3. Incorporation of polypyrrole by selective microgel swelling in ethanol–water mixtures,” Polymer 45, 10791087 (2004).
42. J. Rubio Retama, E. López Cabarcos, D. Mecerreyes, and B. López-Ruiz, “ Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase,” Biosens. Bioelectron. 20, 11111117 (2004).
43. Y. Lu, Y. Mei, M. Drechsler, and M. Ballauff, “ Thermosensitive core–shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks,” Angew. Chem., Int. Ed. 45, 813816 (2006).
44. M. Karg, Y. Lu, E. Carbo-Argibay, I. Pastoriza-Santos, J. Perez-Juste, L. M. Liz-Marzan, and T. Hellweg, “ Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-coallylacetic acid) microgels: Temperature- and pH-tunable plasmon resonance,” Langmuir 25, 31633167 (2009).
45. C. Menager, O. Sandre, J. Mangili, and V. Cabuil, “ Preparation and swelling of hydrophilic magnetic microgels,” Polymer 45, 24752481 (2004).
46. C. Bai, Y. Fang, Y. Zhang, and B. Chen, “ Synthesis of novel metal sulfide−polymer composite microspheres exhibiting patterned surface structures,” Langmuir 20, 263265 (2004).
47. A. Pich, J. Hain, Y. Lu, V. Boyko, Y. Prots, and H.-J. Adler, “ Hybrid microgels with ZnS inclusions,” Macromolecules 38, 66106619 (2005).
48. N. Nassif, N. Gehrke, N. Pinna, N. Shirshova, K. Tauer, M. Antonietti, and H. Cölfen, “ Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway,” Angew. Chem., Int. Ed. 44, 60046009 (2005).
49. G. Zhang, D. Wang, Z.-Z. Gu, J. Hartmann, and H. Möhwald, “ Two-dimensional non-close-packing arrays derived from s-assembly of biomineralized hydrogel spheres and their patterning applications,” Chem. Mater. 17, 52685274 (2005).
50. Y. Gong, M. Gao, D. Wang, and H. Möhwald, “ Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding: Toward fluorescent microspheres with temperature-responsive properties,” Chem. Mater. 17, 26482653 (2005).
51. A. Pich, F. Zhang, L. Shen, S. Berger, O. Ornatsky, V. Baranov, and M. A. Winnik, “ Biocompatible hybrid nanogels,” Small 4, 21712175 (2008).
52. S. Barcikowski, F. Devesa, and K. Moldenhauer, “ Impact and structure of literature on nanoparticle generation by laser ablation in liquids,” J. Nanopart. Res. 11, 18831893 (2009).
53. N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, “ Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology 20, 445603 (2009).
54. C. L. Sajti, R. Sattari, B. N. Chichkov, S. Barcikowski, “ Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid,” J. Phys. Chem. C 114, 24212427 (2010).
55. P. Wagener, A. Schwenke, B. N. Chichkov, and S. Barcikowski, “ Pulsed laser ablation of zinc in tetrahydrofuran: Bypassing the cavitation bubble,” J. Phys. Chem. C 114, 76187625 (2010).
56. D. D. van’t Zand, P. Nachev, R. Rosenfeld, P. Wagener, A. Pich, D. Klee, and S. Barcikowski, “ Nanocomposite fibre fabrication via in situ monomer grafting and bonding on laser generated nanoparticles,” J. Laser Micro/Nanoeng. 7, 2127 (2012).
57. M. Agrawal, A. Pich, S. Gupta, N. E. Zafeiropoulos, J. Rubio-Retama, F. Simon, and M. Stamm, “ Temperature sensitive hybrid microgels loaded with zno nanoparticles,” J. Mater. Chem. 18, 25812586 (2008).
58. J. C. Hurt and C. J. Phillips, “ Structural role of zinc oxide in glasses in the system Na2OZnO-SiO2,” J. Am. Ceram. Soc. 53, 269273 (1970).
59. S. C. Pillai, J. M. Kelly, D. E. McCormack, P. O’Brien, and R. Ramesh, “ The effect of processing conditions on varistors prepared from nanocrystalline ZnO,” J. Mater. Chem. 13, 25862590 (2003).
60. V. Boyko, A. Pich, Y. Lu, S. Richter, K.-F. Arndt, and H.-J. P. Adler, “ Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 1—Synthesis and Characterization,” Polymer 44, 78217827 (2003).
61. M.-T. Leccia, M.-J. Richard, A. Favier, and J.-C. B’Eani, “ Zinc protects against ultraviolet A1-induced DNA damage and apoptosis in cultured human fibroblasts,” Biol. Trace Elem. Res. 69, 177190 (1999).
62. E. Borenfreund and Babich, “In vitro cytotoxicity of heavy metals, acrylamide, and organotin salts to neural cells and fibroblasts,” Cell Biol. Toxicol. 3, 6373 (1987).

Data & Media loading...


Article metrics loading...



Loading microgels with bioactive nanoparticles (NPs) often requires multiple synthesis and purification steps, and organic solvents or precursors that are difficult to remove from the gel. Hence, a fast and aqueous synthesis procedure would facilitate the synthesis of inorganic–organic hybrid microgels. Two microgel compounds were hybridized with laser-generated zinc oxide (ZnO) NPs prepared in a single-step procedure. ZnO NPs were formed by laser ablation in liquid, while the polymermicrogels were synthesized in-situ inside the ablation chamber. Further, the authors report the preparation of two different microgel systems. The first one was produced without the use of chemical initiator forming hydrogels with ZnO NPs and diffuse morpholgy. Typical microgelcolloids were also synthesized via a conventional chemical method in a preheated reaction chamber. The existence of microgelcolloids partially loaded with ZnO NPs was confirmed in a transmission electron microscopy investigation. Fourier transform infrared spectroscopic measurements and dynamic light scattering verify the formation of polymercolloids. These initial results indicate the application potential of laser ablation in microgel precursor solution for the fabrication of polymeric carriers for inorganic nanoparticles. Preliminary biological tests using zinc chloride demonstrated negative dose effects on primary cell culture with zinc concentrations above 200 μM but no noticeable influence at 100 μM.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd