Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Maruo, O. Nakamura, and S. Kawata, “ Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132134 (1997).
2. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “ Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 5154 (1999).
3. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “ Finer features for functional microdevices,” Nature (London) 412, 697698 (2001).
4. R. Houbertz, S. Steenhusen, T. Stichel, and G. Sextl, “ Two-photon polymerization of inorganic-organic hybrid polymers as scalable technology using ultra-short laser pulses,” in Coherence and Ultrashort Pulse Laser Emission, edited by F. J. Duarte (InTech, Rijeka, 2010).
5. J. Fischer, G. von Freymann, and M. Wegener, “ The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22, 35783582 (2010).
6. J. Fischer and M. Wegener, “ Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1, 614624 (2011).
7. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “ Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
8. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “ Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444447 (2004).
9. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “ Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Mater. 7, 543546 (2008).
10. S. Juodkazis, V. Mizeikis, and H. Misawa, “ Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
11. E. Brasselet, M. Malinauskas, A. Zukauskas, and S. Juodkazis, “ Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
12. M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, S. I. M. Farsari, and S. Juodkazis, “ Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
13. M. Malinauskas, H. Gilbergs, A. Zukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “ A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
14. A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “ Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater. 2, 267275 (2006).
15. A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “ Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 65996602 (2007).
16. S.-H. Lee, J. J. Moon, and J. L. West, “ Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration,” Biomaterials 29, 29622968 (2008).
17. F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “ Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23, 13411345 (2011).
18. A. Ovsianikov, B. Chichkov, O. Adunka, H. Pillsbury, A. Doraiswamy, and R. J. Narayan, “ Rapid prototyping of ossicular replacement prostheses,” Appl. Surf. Sci. 253, 66036607 (2007).
19. K. H. Haas, S. Amberg-Schwab, and K. Rose, “ Functionalized coating materials based on inorganic-organic polymers,” Thin Solid Films 351, 198203 (1999).
20. U. Haas, A. Haase, V. Satzinger, H. Pichler, G. Leising, G. Jakopic, B. Stadlober, R. Houbertz, G. Domann, and A. Schmitt, “ Hybrid polymers as tunable and directly-patternable gate dielectrics in organic thin-film transistors,” Phys. Rev. B 73, 235339 (2006).
21. R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “ Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836840 (2007).
22. R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “ Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic - organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 36623675 (2007).
23. R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J. U. Park, L. Frohlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “ Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442, 194200 (2003).
24. R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W. S. Kim, “ Impact of photoinitiators on the photopolymerization and the optical properties of inorganic-organic hybrid polymers,” Appl. Phys. Lett. 84, 11051107 (2004).
25. R. Houbertz, H. Wolter, V. Schmidt, L. Kuna, V. Satzinger, C. Wchter, and G. Langer, “ Optical waveguides embedded in PCBs - a real world application of 3D structures written by TPA,” Mater. Res. Soc. Symp. Proc. 1054, 1054FF0104 (2007).
26. A. Doraiswamy, T. Patz, R. J. Narayan, B. Chichkov, A. Ovsianikov, R. Houbertz, R. Modi, R. Auyeung, and D. B. Chrisey, “ Biocompatibility of CAD/CAM ORMOCER polymer scaffold structures,” Mater. Res. Soc. Symp. Proc. 845, AA24 (2005).
27. S. Steenhusen, T. Stichel, R. Houbertz, and G. Sextl, “ Multi-photon polymerization of inorganic-organic hybrid polymers using visible or IR ultrafast laser pulses for optical or optoelectronic devices,” Proc. SPIE 7591, 759114 (2010).
28. K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. van Stryland, and D. J. Hagan, “ Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497502 (2004).
29. H. B. Sun, T. Tanaka, and S. Kawata, “ Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett. 80, 36733675 (2002).
30. S. Fessel, A. M. Schneider, S. Steenhusen, R. Houbertz, and P. Behrens, J. Sol-Gel Sci. Technol. (2012) published online.
31. M. Malinauskas, P. Danilevicius, and S. Juodkazis, “ Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 56025610 (2011).
32. M. J. Booth and T. Wilson, “ Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt. 6, 266272 (2001).
33. M. J. Nasse and J. C. Woehl, “ Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27, 295302 (2010).
34. U. Fuchs, U. D. Zeitner, and A. Tünnermann, “ Hybrid optics for focusing ultrashort laser pulses,” Opt. Lett. 31, 15161518 (2006).
35. S. M. Mansfield and G. S. Kino, “ Solid immersion microscope,” Appl. Phys. Lett. 57, 26152616 (1990).
36. I. Ichimura, S. Hayashi, and G. S. Kino, “ High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 43394348 (1997).
37. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “ High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 40714073 (2001).
38. M. Lang, E. Aspnes, and T. D. Milster, “ Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express 16, 2000820028 (2008).
39. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “ Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).

Data & Media loading...


Article metrics loading...



The fabrication of sub-100 nm feature sizes in large-scale three-dimensional (3D) geometries by two-photon polymerization requires a precise control of the polymericreactions as well as of the intensity distribution of the ultrashort laser pulses. The authors, therefore, investigate the complex interplay of photoresist, processing parameters, and focusing optics. New types of inorganic– organic hybrid polymers are synthesized and characterized with respect to achievable structure sizes and their degree of crosslinking. For maintaining diffraction-limited focal conditions within the 3D processing region, a special hybrid optics is developed, where spatial and chromatic aberrations are compensated by a diffractive optical element. Feature sizes below 100 nm are demonstrated.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd