1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization
Rent:
Rent this article for
Access full text Article
/content/lia/journal/jla/24/4/10.2351/1.4730807
1.
1. S. Maruo, O. Nakamura, and S. Kawata, “ Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132134 (1997).
http://dx.doi.org/10.1364/OL.22.000132
2.
2. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “ Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 5154 (1999).
http://dx.doi.org/10.1038/17989
3.
3. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “ Finer features for functional microdevices,” Nature (London) 412, 697698 (2001).
http://dx.doi.org/10.1038/35089130
4.
4. R. Houbertz, S. Steenhusen, T. Stichel, and G. Sextl, “ Two-photon polymerization of inorganic-organic hybrid polymers as scalable technology using ultra-short laser pulses,” in Coherence and Ultrashort Pulse Laser Emission, edited by F. J. Duarte (InTech, Rijeka, 2010).
5.
5. J. Fischer, G. von Freymann, and M. Wegener, “ The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22, 35783582 (2010).
http://dx.doi.org/10.1002/adma.201000892
6.
6. J. Fischer and M. Wegener, “ Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1, 614624 (2011).
http://dx.doi.org/10.1364/OME.1.000614
7.
7. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “ Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
http://dx.doi.org/10.1126/science.1167610
8.
8. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “ Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444447 (2004).
http://dx.doi.org/10.1038/nmat1155
9.
9. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “ Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Mater. 7, 543546 (2008).
http://dx.doi.org/10.1038/nmat2197
10.
10. S. Juodkazis, V. Mizeikis, and H. Misawa, “ Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
http://dx.doi.org/10.1063/1.3216462
11.
11. E. Brasselet, M. Malinauskas, A. Zukauskas, and S. Juodkazis, “ Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
http://dx.doi.org/10.1063/1.3517519
12.
12. M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, S. I. M. Farsari, and S. Juodkazis, “ Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
http://dx.doi.org/10.1088/2040-8978/12/12/124010
13.
13. M. Malinauskas, H. Gilbergs, A. Zukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “ A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
http://dx.doi.org/10.1088/2040-8978/12/3/035204
14.
14. A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “ Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater. 2, 267275 (2006).
http://dx.doi.org/10.1016/j.actbio.2006.01.004
15.
15. A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “ Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 65996602 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.01.058
16.
16. S.-H. Lee, J. J. Moon, and J. L. West, “ Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration,” Biomaterials 29, 29622968 (2008).
http://dx.doi.org/10.1016/j.biomaterials.2008.04.004
17.
17. F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “ Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23, 13411345 (2011).
http://dx.doi.org/10.1002/adma.201004060
18.
18. A. Ovsianikov, B. Chichkov, O. Adunka, H. Pillsbury, A. Doraiswamy, and R. J. Narayan, “ Rapid prototyping of ossicular replacement prostheses,” Appl. Surf. Sci. 253, 66036607 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.01.062
19.
19. K. H. Haas, S. Amberg-Schwab, and K. Rose, “ Functionalized coating materials based on inorganic-organic polymers,” Thin Solid Films 351, 198203 (1999).
http://dx.doi.org/10.1016/S0040-6090(99)00203-5
20.
20. U. Haas, A. Haase, V. Satzinger, H. Pichler, G. Leising, G. Jakopic, B. Stadlober, R. Houbertz, G. Domann, and A. Schmitt, “ Hybrid polymers as tunable and directly-patternable gate dielectrics in organic thin-film transistors,” Phys. Rev. B 73, 235339 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235339
21.
21. R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “ Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836840 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.08.011
22.
22. R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “ Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic - organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 36623675 (2007).
http://dx.doi.org/10.1002/pssa.200776416
23.
23. R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J. U. Park, L. Frohlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “ Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442, 194200 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00982-9
24.
24. R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W. S. Kim, “ Impact of photoinitiators on the photopolymerization and the optical properties of inorganic-organic hybrid polymers,” Appl. Phys. Lett. 84, 11051107 (2004).
http://dx.doi.org/10.1063/1.1647706
25.
25. R. Houbertz, H. Wolter, V. Schmidt, L. Kuna, V. Satzinger, C. Wchter, and G. Langer, “ Optical waveguides embedded in PCBs - a real world application of 3D structures written by TPA,” Mater. Res. Soc. Symp. Proc. 1054, 1054FF0104 (2007).
http://dx.doi.org/10.1557/PROC-1054-FF01-04
26.
26. A. Doraiswamy, T. Patz, R. J. Narayan, B. Chichkov, A. Ovsianikov, R. Houbertz, R. Modi, R. Auyeung, and D. B. Chrisey, “ Biocompatibility of CAD/CAM ORMOCER polymer scaffold structures,” Mater. Res. Soc. Symp. Proc. 845, AA24 (2005).
http://dx.doi.org/10.1557/PROC-845-AA2.4
27.
27. S. Steenhusen, T. Stichel, R. Houbertz, and G. Sextl, “ Multi-photon polymerization of inorganic-organic hybrid polymers using visible or IR ultrafast laser pulses for optical or optoelectronic devices,” Proc. SPIE 7591, 759114 (2010).
http://dx.doi.org/10.1117/12.852324
28.
28. K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. van Stryland, and D. J. Hagan, “ Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497502 (2004).
http://dx.doi.org/10.1016/S1010-6030(03)00394-0
29.
29. H. B. Sun, T. Tanaka, and S. Kawata, “ Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett. 80, 36733675 (2002).
http://dx.doi.org/10.1063/1.1478128
30.
30. S. Fessel, A. M. Schneider, S. Steenhusen, R. Houbertz, and P. Behrens, J. Sol-Gel Sci. Technol. (2012) published online.
http://dx.doi.org/10.1007/s10971-012-2794-7
31.
31. M. Malinauskas, P. Danilevicius, and S. Juodkazis, “ Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 56025610 (2011).
http://dx.doi.org/10.1364/OE.19.005602
32.
32. M. J. Booth and T. Wilson, “ Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt. 6, 266272 (2001).
http://dx.doi.org/10.1117/1.1382808
33.
33. M. J. Nasse and J. C. Woehl, “ Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27, 295302 (2010).
http://dx.doi.org/10.1364/JOSAA.27.000295
34.
34. U. Fuchs, U. D. Zeitner, and A. Tünnermann, “ Hybrid optics for focusing ultrashort laser pulses,” Opt. Lett. 31, 15161518 (2006).
http://dx.doi.org/10.1364/OL.31.001516
35.
35. S. M. Mansfield and G. S. Kino, “ Solid immersion microscope,” Appl. Phys. Lett. 57, 26152616 (1990).
http://dx.doi.org/10.1063/1.103828
36.
36. I. Ichimura, S. Hayashi, and G. S. Kino, “ High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 43394348 (1997).
http://dx.doi.org/10.1364/AO.36.004339
37.
37. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “ High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 40714073 (2001).
http://dx.doi.org/10.1063/1.1381574
38.
38. M. Lang, E. Aspnes, and T. D. Milster, “ Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express 16, 2000820028 (2008).
http://dx.doi.org/10.1364/OE.16.020008
39.
39. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “ Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
http://dx.doi.org/10.1063/1.1858060
http://aip.metastore.ingenta.com/content/lia/journal/jla/24/4/10.2351/1.4730807
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

-Raman spectra of unpolymerized OC-I (solid line) and polymerized structure (dashed line) fabricated by 2PP.

Image of FIG. 2.

Click to view

FIG. 2.

Degree of C=C conversion in cubes fabricated from OC-I with different hatching distances and laser powers.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Results of ascending scans in OC-II with laser powers from 200 to 500 W. (b) Logarithmic plot of points with constant diameter vs laser power and exposure time to reveal the scaling mechanism. The slope of the dashed line (N = 1) corresponds to linear absorption, whereas the solid line (N = 2) to a two-photon absorption process.

Image of FIG. 4.

Click to view

FIG. 4.

SEM images of small features structured in OC-II. Left: Voxel fabricated with 164 μW and 100 ms. Right: Crystal like structure created with 550 μW and a feed rate of 50 μm/s.

Image of FIG. 5.

Click to view

FIG. 5.

Layout of the specifically designed hybrid optics consisting of anaspheric lens (Edmund Optics 47 093), a DOE, and a half ball lens (N-SK11, r = 2 mm) working as solid immersion lens.

Image of FIG. 6.

Click to view

FIG. 6.

Diameter of volume pixel on the substrate surface written with Zeiss Plan-Apochromat (a) and hybrid optics (b). In both cases, the smallest feature sizes are close to 200 nm. The differences in slope and separation between the curves in (a) and (b) are caused by the different aperture sizes of microscope objective and hybrid optics.

Image of FIG. 7.

Click to view

FIG. 7.

Measured line width vs writing depth inside the polymer when focusing with the Zeiss Plan-Apochromat (a) and the hybrid optics (b). Scanning speed for all lines was 10 m/s. Only (b) shows constant line widths for increasing writing depths and nonvarying writing parameters.

Image of FIG. 8.

Click to view

FIG. 8.

Temporal broadening of laser pulses caused by the GVD of the focusing optics in dependence of the initial pulse duration. The values of the introduced GVD for hybrid optics and microscope objective are 842 fs2 and 2000 fs2, respectively.

Loading

Article metrics loading...

/content/lia/journal/jla/24/4/10.2351/1.4730807
2012-07-16
2014-04-19

Abstract

The fabrication of sub-100 nm feature sizes in large-scale three-dimensional (3D) geometries by two-photon polymerization requires a precise control of the polymericreactions as well as of the intensity distribution of the ultrashort laser pulses. The authors, therefore, investigate the complex interplay of photoresist, processing parameters, and focusing optics. New types of inorganic– organic hybrid polymers are synthesized and characterized with respect to achievable structure sizes and their degree of crosslinking. For maintaining diffraction-limited focal conditions within the 3D processing region, a special hybrid optics is developed, where spatial and chromatic aberrations are compensated by a diffractive optical element. Feature sizes below 100 nm are demonstrated.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/24/4/1.4730807.html;jsessionid=3pl05mhhki5hs.x-aip-live-02?itemId=/content/lia/journal/jla/24/4/10.2351/1.4730807&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization
http://aip.metastore.ingenta.com/content/lia/journal/jla/24/4/10.2351/1.4730807
10.2351/1.4730807
SEARCH_EXPAND_ITEM