Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/lia/journal/jla/25/4/10.2351/1.4805094
1.
1. P. Lacovara, H. Choi, C. Wang, R. Aggarwal, and T. Fan, “ Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 10891091 (1991).
http://dx.doi.org/10.1364/OL.16.001089
2.
2. A. Brenier, “ A new evaluation of Yb3+-doped crystals for laser applications,” J. Lumin. 92, 199204 (2001).
http://dx.doi.org/10.1016/S0022-2313(00)00258-1
3.
3. W. F. Krupke, “ Ytterbium solid-state lasers—The first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 12871296 (2000).
http://dx.doi.org/10.1109/2944.902180
4.
4. L. Zheng, G. Zhao, L. Su, and J. Xu, “ Comparison of optical properties between ytterbium-doped Lu2SiO5 (Yb:LSO) and ytterbium-doped Lu2Si2O7 (Yb:LPS) laser crystals,” J. Alloys Compd. 471, 157161 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.03.072
5.
5. U. Brauch, A. Giesen, M. Karszewski, Chr. Stewen, and A. Voss, “ Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20(7), 713715 (1995).
http://dx.doi.org/10.1364/OL.20.000713
6.
6. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “ Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105116 (1997).
http://dx.doi.org/10.1109/2944.585822
7.
7. T. Taira, W. M. Tulloch, and R. L. Byer, “ Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36(9), 18671874 (1997).
http://dx.doi.org/10.1364/AO.36.001867
8.
8. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “ Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 19751979 (2003).
http://dx.doi.org/10.1364/JOSAB.20.001975
9.
9. A. K. Jafari and M. Aas, “ Continuous-wave theory of Yb:YAG end-pumped thin-disk lasers,” Appl. Opt. 48(1), 106113 (2009).
http://dx.doi.org/10.1364/AO.48.000106
10.
10. U. Keller, “ Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100, 1528 (2010).
http://dx.doi.org/10.1007/s00340-010-4045-3
11.
11. E. Innerhofer, T. Sudmeyer, F. Brunner, R. Haring, A. Aschwanden, R. Paschotta, C. Honninger, M. Kumkar, and U. Keller, “ 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28, 367369 (2003).
http://dx.doi.org/10.1364/OL.28.000367
12.
12. C. Honninger, G. Zhang, U. Keller, and G. Giesen, “ Femtosecond Yb:YAG laser using semiconductor saturable absorbers,” Opt. Lett. 20(23), 24022404 (1995).
http://dx.doi.org/10.1364/OL.20.002402
13.
13. S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Mass, M. Golling, T. Sudmeyer, and U. Keller, “ Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16(9), 63976407 (2008).
http://dx.doi.org/10.1364/OE.16.006397
14.
14. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “ Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16(25), 2053020539 (2008).
http://dx.doi.org/10.1364/OE.16.020530
15.
15. G. L. Bourdet, “ Short-pulse generation at 10 μm in an active cw-injected ring laser cavity,” Appl. Opt. 42(27), 54575462 (2003).
http://dx.doi.org/10.1364/AO.42.005457
16.
16. Z. Huang and G. L. Bourdet, “ Theoretical study of cw to short pulse conversion in an active cw-injected ring cavity with a Yb3+:YAG amplifier,” Appl. Opt. 46(14), 27032708 (2007).
http://dx.doi.org/10.1364/AO.46.002703
17.
17. Z. Huang, G. Li, and Y. Qiu, “ Modeling of short-pulse generation by Yb3+:YAG crystal in an active continuous-wave-injected ring cavity using different end pump methods,” J. Opt. Soc. Am. B 25(9), 14371441 (2008).
http://dx.doi.org/10.1364/JOSAB.25.001437
18.
18. Z. Huang, G. Li, and Y. Qiu, “ Power calculation of wavelength tunable Yb3+:LSO laser,” Opt. Express 18(20), 2097920987 (2010).
http://dx.doi.org/10.1364/OE.18.020979
http://aip.metastore.ingenta.com/content/lia/journal/jla/25/4/10.2351/1.4805094
Loading
/content/lia/journal/jla/25/4/10.2351/1.4805094
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/lia/journal/jla/25/4/10.2351/1.4805094
2013-05-16
2016-08-30

Abstract

On the basis of the spectral information, a theoretical model is developed to calculate the peak intensity of the short pulse from an active continuous wave injected ring cavity with Yb:YAG amplifier. Starting from rate equation, the formula describing the short pulse is obtained. As a computable model, it takes into account the pump absorption saturation and the laser reabsorption. By this model, the peak intensities of the short pulse under different cases are analyzed.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/25/4/1.4805094.html;jsessionid=-b67iYfR5UGrB47qLRJ01V9o.x-aip-live-02?itemId=/content/lia/journal/jla/25/4/10.2351/1.4805094&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=Lia.aip.org/25/4/10.2351/1.4805094&pageURL=http://scitation.aip.org/content/lia/journal/jla/25/4/10.2351/1.4805094'
Right1,Right2,