Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. C. Samia, X. Chen, and C. Burda, “ Semiconductor quantum dots for photodynamic therapy,” J. Am. Chem. Soc. 125(51), 1573615737 (2003).
2. J. M. Costa-Fernández, R. Pereiro, and A. Sanz-Medel, “ The use of luminescent quantum dots for optical sensing,” TrAC, Trends Anal. Chem. 25(3), 207218 (2006).
3. J. Seo, S. Ma, Q. Yang, L. Creekmore, R. Battle, H. Brown, A. Jackson, T. Skyles, B. Tabibi, and W. Yu, “ Large resonant third-order optical nonlinearity of CdSe nanocrystal quantum dots,” J. Phys.: Conf. Ser. 38, 9194 (2006).
4. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “ Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760769 (1990).
5. N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics ( Prentice-Hall, Inc., Englewood Cliffs, NJ, 1993).
6. F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. Ekimov, “ Optical and electro-optical properties of II-VI quantum dots,” Semicond. Sci. Technol. 6(9A) A41A50 (1991).
7. M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “ Lasing from semiconductor quantum rods in a cylindrical microcavity,” Adv. Mater. 14(4), 317321 (2002).<317::AID-ADMA317>3.0.CO;2-U
8. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “ Hybrid nanorod-polymer solar cells,” Science 295(5564), 24252427 (2002).
9. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “ Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 15061508 (2002).
10. M.-P. Pileni, “ The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals,” Nat. Mater. 2(3), 145150 (2003).
11. X. Huang, X. Zhang, Y. Zhu, T. Li, L. Han, X. Shang, H. Ni, and Z. Niu, “ The effect of an electric field on the nonlinear response of InAs/GaAs quantum dots,” J. Opt. 12(5), 055203 (2010).
12. X.-x. Yu and Y.-h. Wang, “ Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerr-lens autocorrelation method,” Opt. Express 22(1), 177182 (2014).
13. Z.-B. Liu, S. Shi, X.-Q. Yan, W.-Y. Zhou, and J.-G. Tian, “ Discriminating thermal effect in nonlinear-ellipse-rotation-modified Z-scan measurements,” Opt. Lett. 36(11), 20862088 (2011).
14. B. S. Kalnoor, P. B. Bisht, K. C. Jena, V. Velkannan, and P. Bhyrappa, “ Mixed β-pyrrole substituted meso-tetraphenylporphyrins and their metal complexes: Optical nonlinearity using degenerate four wave mixing technique,” J. Phys. Chem. A 117(34), 82168221 (2013).
15. I. Dancus, S. T. Popescu, and A. Petris, “ Single shot interferometric method for measuring the nonlinear refractive index,” Opt. Express 21(25), 3130331308 (2013).
16. E. Hanamura, “ Very large optical nonlinearity of semiconductor microcrystallites,” Phys. Rev. B 37(3), 12731279 (1988).
17. H. Hosono, Y. Abe, Y. L. Lee, T. Tokizaki, and A. Nakamura, “ Large third‐order optical nonlinearity of nanometer‐sized amorphous semiconductor: Phosphorous colloids formed in SiO2 glass by ion implantation,” Appl. Phys. Lett. 61(23), 27472749 (1992).
18. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “ Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett. 9(7), 25322536 (2009).
19. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “ Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture,” Nano Lett. 1(4), 207211 (2001).
20. X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, “ In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969976 (2004).
21. D. L. Klein, R. Roth, A. K. Lim, A. P. Alivisatos, and P. L. McEuen, “ A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389(6652), 699701 (1997).
22. N. C. Greenham, X. Peng, and A. P. Alivisatos, “ Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity,” Phys. Rev. B 54(24), 1762817637 (1996).
23. V. Sholin, A. Breeze, I. Anderson, Y. Sahoo, D. Reddy, and S. Carter, “ All-inorganic CdSe/PbSe nanoparticle solar cells,” Sol. Energy Mater. Sol. Cells 92(12), 17061711 (2008).
24. M. R. Gaeeni, M. Tohidian, and M. MajalesAra, “ Green synthesis of CdSe colloidal nanocrystals with strong green emission by Sol-Gel method,” Indus. Eng. Chem. Res. 53, 75987603 (2014).
25. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “ High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955957 (1989).
26. T. Cassano, R. Tommasi, M. Ferrara, F. Babudri, G. Farinola, and F. Naso, “ Substituent-dependence of the optical nonlinearities in poly (2, 5-dialkoxy-p-phenylenevinylene) polymers investigated by the Z-scan technique,” Chem. Phys. 272(1), 111118 (2001).
27. J. Li, P. Jiang, C. Wei, and J. Shi, “ Linear and nonlinear optical properties of covalently bound CI Disperse red 1 chromophore/silica hybrid film,” Dyes Pigm. 78(3), 219224 (2008).
28. V. I. Klimov, “ Nanocrystal quantum dots-From fundamental photophysics to multicolor lasing,” Los Alamos Sci. 28, 214220 (2003).
29. O. S. Oluwafemi, “ A novel ‘green’ synthesis of starch-capped CdSe nanostructures,” Colloids Surf., B 73(2), 382386 (2009).
30. Z. Wang, Q. Lu, M. Kong, and L. Zhang, “ Manipulation of the morphology of semiconductor based nanostructures from core–shell nanoparticles to nanocables: The case of CdSe/SiO2,” Chem. Eur. J. 13(5), 14631470 (2007).
31. M. Sreemany and S. Sen, “ A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO< sub> 2</sub> thin films,” Mater. Chem. Phys. 83(1), 169177 (2004).
32. P. Lippens and M. Lannoo, “ Optical properties of II-VI semiconductor nanocrystals,” Semicond. Sci. Technol. 6(9A), A157A160 (1991).
33. I. Gerdova and A. Haché, “ Third-order non-linear spectroscopy of CdSe and CdSe/ZnS core shell quantum dots,” Opt. Commun. 246(1–3), 205212 (2005).
34. A. Yoffe, “ Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys. 51(2), 799890 (2002).
35. S. Park, R. A. Morgan, Y. Hu, M. Lindberg, S. W. Koch, and N. Peyghambarian, “ Nonlinear optical properties of quantum-confined CdSe microcrystallites,” JOSA B 7(10), 20972105 (1990).
36. G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “ Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 1281812833 (2007).
37. M. Jacobsohn and U. Banin, “ Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104(1), 15 (2000).
38. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “ Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 14341436 (2003).
39. A. P. Alivisatos, W. Gu, and C. Larabell, “ Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7, 5576 (2005).
40. B. Dong, L. Cao, G. Su, and W. Liu, “ Facile synthesis of highly luminescent water-soluble ZnSe: Mn/ZnS core/shell doped nanocrystals with pure dopant emission,” J. Phys. Chem. C 116(22), 1225812264 (2012).
41. W. Guo, J. J. Li, Y. A. Wang, and X. Peng, “ Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability,” J. Am. Chem. Soc. 125(13), 39013909 (2003).
42. J. Aldana, Y. A. Wang, and X. Peng, “ Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols,” J. Am. Chem. Soc. 123(36), 88448850 (2001).
43. L. Liu, Q. Peng, and Y. Li, “ Preparation of CdSe quantum dots with full color emission based on a room temperature injection technique,” Inorg. Chem. 47(11), 50225028 (2008).

Data & Media loading...


Article metrics loading...



The present paper investigates the linear and nonlinear optical properties of CdSe colloidal nanocrystals which have been prepared by an improved sol-gel green technique. UV-visible absorption spectroscopy and Z-scan technique were used to identify the linear and nonlinear optical properties of CdSe colloidal nanocrystals. The maximum peaks absorption for two samples 2.5 nm and 3 nm were 480 nm and 485 nm, respectively. In addition, the linear absorption coefficients (α), the nonlinear absorption coefficients (β), and the nonlinear refractive index (n), with their signs and magnitudes for two different sizes of CdSe quantum dots (QDs) were obtained in 15, 25, and 50 mW laser intensities using the single beam Z-scan method by a continuous wave He-Ne laser at 632.8 nm wavelength. Finally, the photostability and chemical stability of the CdSe QDs were studied that have shown high stability of CdSe colloidal nanocrystals. The mentioned nonlinear optical properties have not been reported before.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd