Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/lia/journal/jla/27/4/10.2351/1.4928290
1.
1. F. Chen , D. Zhang , Q. Yang , and J. Yong , “ Bioinspired wetting surface via laser microfabrication,” ACS Appl. Mater. Interfaces. 5, 67776792 (2013).
http://dx.doi.org/10.1021/am401677z
2.
2. J. Liu , G. Aguilar , R. Munoz , and Y. Yan , “ Hydrophilic zeolite coatings for improved heat transfer: a quantitative analysis,” AIChE J. 54, 779790 (2008).
http://dx.doi.org/10.1002/aic.11409
3.
3. D. Lattner and H. P. Jennissen , “ Preparation and properties of ultra-hydrophilic surfaces on titanium and steel,” Mater Wiss. Werkst. Tech. 40, 108116 (2009).
http://dx.doi.org/10.1002/mawe.200800416
4.
4. L. Cao , A. K. Jones , V. K. Sikka , J. Wu , and D. Gao , “ Anti-icing superhydrophobic coatings,” Langmuir 25, 1244412448 (2009).
http://dx.doi.org/10.1021/la902882b
5.
5. L. J. Chen , M. Chen , H. D. Zhou , and J. M. Chen , “ Preparation of super-hydrophobic surface on stainless steel,” Appl. Surf. Sci. 255, 34593462 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.07.122
6.
6. X. M. Li , D. Reinhoudt , and M. Crego-Calama , “ What do we need for a superhydrophobic surface. A review on the recent progress in the preparation of superhydrophobic surfaces,” Chem. Soc. Rev. 36, 13501368 (2007).
http://dx.doi.org/10.1039/b602486f
7.
7. M. Tang , V. Shim , Z. Y. Pan , Y. S. Choo , and M. H. Hong , “ Laser ablation of metal substrates for super-hydrophobic effect,” J. Laser Micro/Nanoeng. 6, 69 (2011).
http://dx.doi.org/10.2961/jlmn.2011.01.0002
8.
8. J. Lawrence and L. Li , “ On the mechanisms of wetting characteristics modification for selected metallic materials by means of high power diode laser radiation,” J. Laser Appl. 14, 107113 (2002).
http://dx.doi.org/10.2351/1.1471560
9.
9. L. Hao , J. Lawrence , Y. F. Phua , K. S. Chian , G. C. Lim , and H. Y. Zheng , “ Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment,” J. Biomed. Mater. Res. B, Appl. Biomater. 73, 148156 (2005).
http://dx.doi.org/10.1002/jbm.b.30194
10.
10. A. M. Kietzig , M. N. Mirvakili , S. Kamal , P. Englezos , and S. G. Hatzikiriakos , “ Nanopatterned metallic surfaces: Their wettability and impact on ice friction,” J. Adhes. Sci. Technol. 25, 12931303 (2011).
http://dx.doi.org/10.1163/016942411X555872
11.
11. D. H. Kam , S. Bhattacharya , and J. Mazumder , “ Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification,” J. Micromech. Microeng. 22, 105019 (2012).
http://dx.doi.org/10.1088/0960-1317/22/10/105019
12.
12. A. M. Kietzig , M. N. Mirvakili , S. Kamal , P. Englezos , and S. G. Hatzikiriakos , “ Laser-patterned super-hydrophobic pure metallic substrates: Cassie to Wenzel wetting transitions,” J. Adhes. Sci. Technol. 25, 27892809 (2012).
http://dx.doi.org/10.1163/016942410X549988
13.
13. J. Long , P. Fan , M. Zhong , H. Zhang , Y. Xie , and C. Lin , “ Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures,” Appl. Surf. Sci. 311, 461467 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.05.090
14.
14. C. Dong , Y. Gu , M. Zhong , L. Li , K. Sezer , M. Ma , and W. Liu , “ Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching,” J. Mater. Process. Technol. 211, 12341240 (2011).
http://dx.doi.org/10.1016/j.jmatprotec.2011.02.007
15.
15. V. A. Greenhut , “ Surface considerations for joining ceramics and glasses,” in Engineered Materials Handbook: Adhesives and Sealants, edited by H. F. Brinson ( ASM International, Metals Park, 1991), pp. 298311.
16.
16. J. Yang , F. Luo , T. Sheng Kao , X. Li , G. Wei Ho , J. Teng , X. Luo , and M. Hong , “ Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
http://dx.doi.org/10.1038/lsa.2014.66
17.
17. J. Yang , J. B. Li , Q. H. Gong , J. H. Teng , and M. H. Hong , “ High aspect ratio SiNW arrays with Ag nanoparticles decoration for strong SERS detection,” Nanotechnology 25, 465707 (2014).
http://dx.doi.org/10.1088/0957-4484/25/46/465707
18.
18. J. C. Ion , Laser Processing of Engineering Materials: Principles, Procedure and Industrial Applications ( Elsevier Butterworth-Heinemann, Oxford, 2005).
19.
19. M. S. Brown and C. B. Arnold , Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification ( Springer-Verlag, Berlin Heidelberg, 2010).
20.
20. J. Yang , J. Li , Z. Du , Q. Gong , J. Teng , and M. Hong , “ Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection,” Sci. Rep. 4, 66576665 (2014).
http://dx.doi.org/10.1038/srep06657
21.
21. L. Hao , J. Lawrence , and L. Li , “ The wettability modification of bio-grade stainless steel in contact with simulated physiological liquids by the means of laser irradiation,” Appl. Surf. Sci. 247, 453457 (2005).
http://dx.doi.org/10.1016/j.apsusc.2005.01.163
22.
22. M. Alfano , G. Lubineau , F. Furgiuele , and G. H. Paulino , “ Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints,” Int. J. Adhes. Adhes. 39, 3341 (2012).
http://dx.doi.org/10.1016/j.ijadhadh.2012.03.002
23.
23. L. Hao and J. Lawrence , “ CO2 laser modification of the wettability characteristics of a magnesia partially stabilised zirconia (MgOPSZ) bioceramic,” J. Phys. D: Appl. Phys. 36, 12921299 (2003).
http://dx.doi.org/10.1088/0022-3727/36/11/309
24.
24. F. M. Fowkes , “ Attractive forces at interface,” Ind. Eng. Chem. 56, 4052 (1964).
http://dx.doi.org/10.1021/ie50660a008
25.
25. A. J. Kinloch , Adhesion and Adhesives: Science and Technology ( Chapman and Hall, London, 1987), p. 30.
26.
26. L. Tunna , W. O'Neill , A. Khan , and C. Sutcliffe , “ Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications,” Opt. Lasers Eng. 43, 937950 (2005).
http://dx.doi.org/10.1016/j.optlaseng.2004.11.001
27.
27. M. Trtica , B. Gakovic , D. Batani , T. Desai , P. Panjan , and B. Radak , “ Surface modifications of a titanium implant by a picoseconds Nd:YAG laser operating at 1064 and 532 nm,” Appl. Surf. Sci. 253, 25512556 (2006).
http://dx.doi.org/10.1016/j.apsusc.2006.05.024
28.
28. P. Bizi-bandoki , S. Valette , E. Audouard , and S. Benayoun , “ Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations,” Appl. Surf. Sci. 273, 399407 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.02.054
29.
29. M. M. Gentleman and J. A. Ruud , “ Role of hydroxyls in oxide wettability,” Langmuir 26, 14081411 (2010).
http://dx.doi.org/10.1021/la903029c
http://aip.metastore.ingenta.com/content/lia/journal/jla/27/4/10.2351/1.4928290
Loading
/content/lia/journal/jla/27/4/10.2351/1.4928290
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/lia/journal/jla/27/4/10.2351/1.4928290
2015-08-11
2016-12-06

Abstract

The objective of this work was to investigate the surface wettability alteration of the titanium and 316L grade stainless steel by nanosecond pulsed laser processing method. For this purpose, various processing conditions were studied extensively. Different analyses, including the study of the surface morphology, free energy, oxidation, and roughness changes, were assessed in correlation with wettability. It is shown that laser processing in air up to 1 J/cm2 laser fluences enhances the surface roughness which in turn promotes the hydrophilicity. The shape and distribution of the created surface structures are also effective in this regard. On the other hand, the surface free energy as well as oxygen content also increases significantly on the laser-irradiated surfaces. According to these results, it is more logic to conclude that all of these cooperative chemical and physical changes are involved in increasing the surface wettability and causing it to be more hydrophilic.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/27/4/1.4928290.html;jsessionid=Sjs3WoszFG0f0R_kao5uVs-P.x-aip-live-02?itemId=/content/lia/journal/jla/27/4/10.2351/1.4928290&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=Lia.aip.org/27/4/10.2351/1.4928290&pageURL=http://scitation.aip.org/content/lia/journal/jla/27/4/10.2351/1.4928290'
Right1,Right2,