Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/lia/journal/jla/27/S1/10.2351/1.4815992
1.
1. T. Wohlers, Wohlers Report 2012 – Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress Report (Wohlers Associates, Inc, 2012).
2.
2. G. C. Onwubolu, J. P. Davim, C. Oliveira, and A. Cardoso, “ Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search,” Opt. Laser Technol. 39, 11301134 (2007).
http://dx.doi.org/10.1016/j.optlastec.2006.09.008
3.
3. H.-K. Lee, “ Effects of the cladding parameters on the deposition efficiency in pulsed Nd:YAG laser cladding,” J. Mater. Process. Technol. 202, 321327 (2008).
http://dx.doi.org/10.1016/j.jmatprotec.2007.09.024
4.
4. P. Balu, P. Leggett, S. Hamid, and R. Kovacevic, “ Multi-response optimization of laser-based powder deposition of multi-track single layer Hastelloy C-276,” Mater. Manuf. Processes 28, 173182 (2013).
http://dx.doi.org/10.1080/10426914.2012.677908
5.
5. Q. Zhang, M. Anyakin, R. Zhuk, Y. Pan, V. Kovalenko, and J. Yao, “ Application of regression designs for simulation of laser cladding,” Phys. Procedia 39, 921927 (2012).
http://dx.doi.org/10.1016/j.phpro.2012.10.117
6.
6. E. Toyserkani, A. Khajepour, and S. Corbin, “ Application of experimental-based modeling to laser cladding,” J. Laser Appl. 14, 165173 (2002).
http://dx.doi.org/10.2351/1.1494079
7.
7. Y. Hua and J. Choi, “ Adaptive direct metal/material deposition process using a fuzzy logic-based controller,” J. Laser Appl. 17, 200210 (2005).
http://dx.doi.org/10.2351/1.2098811
8.
8. H. Qi, J. Mazumder, and H. Ki, “ Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition,” J. Appl. Phys. 100, 024903 (2006).
http://dx.doi.org/10.1063/1.2209807
9.
9. S. Kumar, V. Sharma, A. K. S. Choudhary, S. Chattopadhyaya, and S. Hloch, “ Determination of layer thickness in direct metal deposition using dimensional analysis,” Int. J. Adv. Manuf. Technol. 67(9–12), 26812687 (2013).
http://dx.doi.org/10.1007/s00170-012-4683-1
10.
10. Y. Sun and M. Hao, “ Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser,” Opt. Lasers Eng. 50, 985995 (2012).
http://dx.doi.org/10.1016/j.optlaseng.2012.01.018
11.
11. H. El Cheikh, B. Courant, S. Branchu, J. Y. Hascoët, and R. Guillén, “ Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process,” Opt. Lasers Eng. 50, 413422 (2012).
http://dx.doi.org/10.1016/j.optlaseng.2011.10.014
12.
12. J. P. Davim, C. Oliveira, and A. Cardoso, “ Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA),” Mater. Des. 29, 554557 (2008).
http://dx.doi.org/10.1016/j.matdes.2007.01.023
13.
13. V. Ocelik, U. de Oliveira, M. de Boer, and J. T. M. de Hosson, “ Thick Co-based coating on cast iron by side laser cladding: Analysis of processing conditions and coating properties,” Surf. Coat. Technol. 201, 58755883 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2006.10.044
14.
14. J. P. Davim, C. Oliveira, and A. Cardoso, “ Laser cladding: An experimental study of geometric form and hardness of coating using statistical analysis,” Proc. Inst. Mech. Eng., Part B 220, 15491554 (2006).
http://dx.doi.org/10.1243/09544054JEM641
15.
15. U. de Oliveira, V. Ocelík, and J. T. M. De Hosson, “ Analysis of coaxial laser cladding processing conditions,” Surf. Coat. Technol. 197, 127136 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2004.06.029
16.
16. I. Felde, T. Reti, K. Zoltan, L. Costa, R. Colaço, R. Vilar, and B. Verö, “ A simple technique to estimate the processing window for laser clad coatings,” in Surface Engineering Coatings and Heat Treatments 2002: Proceedings of the 1st ASM International Surface Engineering and the 13th IFHTSE Congress (Pub. ASM International, OH, 2003), pp. 237242.
17.
17. Y. L. Huang, J. Liu, N. H. Ma, and J. G. Li, “ Three-dimensional analytical model on laser-powder interaction during laser cladding,” J. Laser Appl. 18, 4246 (2006).
http://dx.doi.org/10.2351/1.2164476
18.
18. Y. Fu, A. Loredo, B. Martin, and A. B. Vannes, “ A theoretical model for laser and powder particles interaction during laser cladding,” J. Mater. Process. Technol. 128, 106112 (2002).
http://dx.doi.org/10.1016/S0924-0136(02)00433-8
19.
19. O. O. Diniz Neto and R. Vilar, “ Physical-computational model to describe the interaction between a laser beam and a powder jet in laser surface processing,” J. Laser Appl. 14, 4651 (2002).
http://dx.doi.org/10.2351/1.1436485
20.
20. N. Yang, “ Concentration model based on movement model of powder flow in coaxial laser cladding,” Opt. Laser Technol. 41, 9498 (2009).
http://dx.doi.org/10.1016/j.optlastec.2008.03.008
21.
21. O. O. D. Neto, A. M. Alcalde, and R. Vilar, “ Interaction of a focused laser beam and a coaxial powder jet in laser surface processing,” J. Laser Appl. 19, 8488 (2007).
http://dx.doi.org/10.2351/1.2402523
22.
22. H. Pan and F. Liou, “ Numerical simulation of metallic powder flow in a coaxial nozzle for the laser aided deposition process,” J. Mater. Process. Technol. 168, 230244 (2005).
http://dx.doi.org/10.1016/j.jmatprotec.2004.11.017
23.
23. H. Pan, R. G. Landers, and F. Liou, “ Dynamic modeling of powder delivery systems in gravity-fed powder feeders,” ASME J. Manuf. Sci. Eng. 128, 337345 (2006).
http://dx.doi.org/10.1115/1.2120778
24.
24. J. Ibarra-Medina and A. Pinkerton, “ Numerical investigation of powder heating in coaxial laser metal deposition,” Surf. Eng. 27, 754761 (2011).
http://dx.doi.org/10.1179/1743294411Y.0000000017
25.
25. H. S. Li, X. C. Yang, J. B. Lei, and Y. S. Wang, “ A numerical simulation of movement powder flow and development of the carrier-gas powder feeder for laser repairing,” in Conference on Material Processing and Manufacturing II (SPIE Digital Library, Beijing, China, 2005), pp. 557564.
http://dx.doi.org/10.1117/12.579796
26.
26. J. M. Lin, “ Numerical simulation of the focused powder streams in coaxial laser cladding,” J. Mater. Process. Technol. 105, 1723 (2000).
http://dx.doi.org/10.1016/S0924-0136(00)00584-7
27.
27. A. Haider and O. Levenspiel, “ Drag coefficient and terminal velocity of spherical and nonspherical particles,” Powder Technol. 58, 6370 (1989).
http://dx.doi.org/10.1016/0032-5910(89)80008-7
28.
28. S. Y. Wen, Y. C. Shin, J. Y. Murthy, and P. E. Sojka, “ Modeling of coaxial powder flow for the laser direct deposition process,” Int. J. Heat Mass Transfer 52, 58675877 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.07.018
29.
29. O. B. Kovalev, A. V. Zaitsev, D. Novichenko, and I. Smurov, “ Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process,” J. Therm. Spray Technol. 20, 465478 (2011).
http://dx.doi.org/10.1007/s11666-010-9539-3
30.
30. S. Zekovic, R. Dwivedi, and R. Kovacevic, “ Numerical simulation and experimental investigation of gas-powder flow from radially symmetrical nozzles in laser-based direct metal deposition,” Int. J. Mach. Tools Manuf. 47, 112123 (2007).
http://dx.doi.org/10.1016/j.ijmachtools.2006.02.004
31.
31. J. Ibarra-Medina and A. J. Pinkerton, “ CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding,” Phys. Procedia 5, 337346 (2010).
http://dx.doi.org/10.1016/j.phpro.2010.08.060
32.
32. I. Tabernero, A. Lamikiz, S. Martínez, E. Ukar, and L. N. López de Lacalle, “ Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process,” J. Mater. Process. Technol. 212, 516522 (2012).
http://dx.doi.org/10.1016/j.jmatprotec.2011.10.019
33.
33. I. Tabernero, A. Lamikiz, E. Ukar, L. N. López de Lacalle, C. Angulo, and G. Urbikain, “ Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding,” J. Mater. Process. Technol. 210, 21252134 (2010).
http://dx.doi.org/10.1016/j.jmatprotec.2010.07.036
34.
34. K. Partes, “ Analytical model of the catchment efficiency in high speed laser cladding,” Surf. Coat. Technol. 204, 366371 (2009).
http://dx.doi.org/10.1016/j.surfcoat.2009.07.041
35.
35. A. Fathi, E. Toyserkani, A. Khajepour, and M. Durali, “ Prediction of melt pool depth and dilution in laser powder deposition,” J. Phys. D 39, 26132623 (2006).
http://dx.doi.org/10.1088/0022-3727/39/12/022
36.
36. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford University Press, Oxford, 1959).
37.
37. D. Rosenthal, “ The theory of moving sources of heat and its application to metal treatments,” Trans. ASME 68, 849866 (1946).
38.
38. C. Lalas, K. Tsirbas, K. Salonitis, and G. Chryssolouris, “ An analytical model of the laser clad geometry,” Int. J. Adv. Manuf. Technol. 32, 3441 (2007).
http://dx.doi.org/10.1007/s00170-005-0318-0
39.
39. H. El Cheikh, B. Courant, J. Y. Hascoët, and R. Guillén, “ Prediction and analytical description of the single laser track geometry in direct laser fabrication from process parameters and energy balance reasoning,” J. Mater. Process. Technol. 212, 18321839 (2012).
http://dx.doi.org/10.1016/j.jmatprotec.2012.03.016
40.
40. G. Zhu, D. Li, A. Zhang, G. Pi, and Y. Tang, “ The influence of standoff variations on the forming accuracy in laser direct metal deposition,” Rapid Prototyping J. 17, 98106 (2011).
http://dx.doi.org/10.1108/13552541111113844
41.
41. G. Zhu, D. Li, A. Zhang, G. Pi, and Y. Tang, “ The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition,” Opt. Laser Technol. 44, 349356 (2012).
http://dx.doi.org/10.1016/j.optlastec.2011.07.013
42.
42. M. N. Ahsan, A. J. Pinkerton, R. J. Moat, and J. Shackleton, “ A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti-6Al-4V powders,” Mater. Sci. Eng. A 528, 76487657 (2011).
http://dx.doi.org/10.1016/j.msea.2011.06.074
43.
43. S. Zhou, X. Dai, and H. Zheng, “ Analytical modeling and experimental investigation of laser induction hybrid rapid cladding for Ni-based WC composite coatings,” Opt. Laser Technol. 43, 613621 (2011).
http://dx.doi.org/10.1016/j.optlastec.2010.09.001
44.
44. M. N. Ahsan and A. J. Pinkerton, “ An analytical-numerical model of laser direct metal deposition track and microstructure formation,” Modell. Simul. Mater. Sci. Eng. 19, 055003 (2011).
http://dx.doi.org/10.1088/0965-0393/19/5/055003
45.
45. C. Chan, J. Mazumder, and M. M. Chen, “ Fluid flow in laser melted pool,” in Modeling of Casting and Welding Processes II (New England College, Henniker, NH, 1983), pp. 297316.
46.
46. M. M. Mahapatra and L. Li, “ Modeling of pulsed-laser superalloy powder deposition using moving distributed heat source,” in Proceedings of the Minerals, Metals & Materials Society Extraction & Processing Division (EPD) Congress 2012 (John Wiley & Sons Inc., Hoboken, New Jersey, 2012), pp. 113120.
47.
47. V. Neela and A. De, “ Three-dimensional heat transfer analysis of LENSTM process using finite element method,” Int. J. Adv. Manuf. Technol. 45, 935943 (2009).
http://dx.doi.org/10.1007/s00170-009-2024-9
48.
48. R. Ye, J. E. Smugeresky, B. Zheng, Y. Zhou, and E. J. Lavernia, “ Numerical modeling of the thermal behavior during the LENS® process,” Mater. Sci. Eng. A 428, 4753 (2006).
http://dx.doi.org/10.1016/j.msea.2006.04.079
49.
49. L. Wang and S. Felicelli, “ Analysis of thermal phenomena in LENS deposition,” Mater. Sci. Eng. A 435–436, 625631 (2006).
http://dx.doi.org/10.1016/j.msea.2006.07.087
50.
50. K. Takeshita and A. Matsunawa, “ Numerical simulation of the molten-pool formation during the laser surface-melting process,” Metall. Mater. Trans. B 32, 949959 (2001).
http://dx.doi.org/10.1007/s11663-001-0081-z
51.
51. L. Costa, R. Vilar, T. Reti, R. Colaco, A. M. Deus, and I. Felde, “ Simulation of phase transformations in steel parts produced by laser powder deposition,” in 4th Hungarian Conference on Materials Science, Testing and Informatics, October 12–14 2003 (Trans Tech Publications, Switzerland, 2005), pp. 315320.
52.
52. L. Costa, R. Vilar, T. Reti, and A. M. Deus, “ Rapid tooling by laser powder deposition: Process simulation using finite element analysis,” Acta Mater. 53, 39873999 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.05.003
53.
53. A. Vasinonta, M. L. Griffith, and J. L. Beuth, “ A process map for consistent build conditions in the solid freeform fabrication of thin-walled structures,” J. Manuf. Sci. Eng. 123, 615622 (2000).
http://dx.doi.org/10.1115/1.1370497
54.
54. T. B. Chen and Y. W. Zhang, “ Analysis of melting in a subcooled two-component metal powder layer with constant heat flux,” Appl. Therm. Eng. 26, 751765 (2006).
http://dx.doi.org/10.1016/j.applthermaleng.2005.07.034
55.
55. A. Suárez, M. J. Tobar, A. Yáñez, I. Pérez, J. Sampedro, V. Amigó, and J. J. Candel, “ Modeling of phase transformations of Ti6Al4V during laser metal deposition,” Phys. Procedia 12A, 666673 (2011).
http://dx.doi.org/10.1016/j.phpro.2011.03.083
56.
56. S. Kumar and S. Roy, “ Development of a theoretical process map for laser cladding using two-dimensional conduction heat transfer model,” Comput. Mater. Sci. 41, 457466 (2008).
http://dx.doi.org/10.1016/j.commatsci.2007.05.002
57.
57. S. Safdar, A. J. Pinkerton, L. Li, M. A. Sheikh, and P. J. Withers, “ An anisotropic enhanced thermal conductivity approach for modelling laser melt pools for Ni-base super alloys,” Appl. Math. Model. 37, 11871195 (2013).
http://dx.doi.org/10.1016/j.apm.2012.03.028
58.
58. J. Choi, L. Han, and Y. Hua, “ Modeling and experiments of laser cladding with droplet injection,” ASME Trans. J. Heat Transfer 127, 978986 (2005).
http://dx.doi.org/10.1115/1.2005273
59.
59. S. Morville, M. Carin, P. Peyre, M. Gharbi, D. Carron, P. Le Masson, and R. Fabbro, “ 2D longitudinal modeling of heat transfer and fluid flow during multilayered direct laser metal deposition process,” J. Laser Appl. 24, 032008 (2012).
http://dx.doi.org/10.2351/1.4726445
60.
60. F. Kong and R. Kovacevic, “ Modeling of heat transfer and fluid flow in the laser multilayered cladding process,” Metall. Mater. Trans. B 41, 13101320 (2010).
http://dx.doi.org/10.1007/s11663-010-9412-2
61.
61. L. Han and F. W. Liou, “ Numerical investigation of the influence of laser beam mode on melt pool,” Int. J. Heat Mass Transfer 47, 43854402 (2004).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.04.036
62.
62. E. Toyserkani, A. Khajepour, and S. Corbin, “ 3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process,” Opt. Lasers Eng. 41, 849867 (2004).
http://dx.doi.org/10.1016/S0143-8166(03)00063-0
63.
63. E. Toyserkani, A. Khajepour, and S. Corbin, “ Three-dimensional finite element modeling of laser cladding by powder injection: Effects of powder feed rate and travel speed on the process,” J. Laser Appl. 15, 153160 (2003).
http://dx.doi.org/10.2351/1.1585087
64.
64. X. He and J. Mazumder, “ Transport phenomena during direct metal deposition,” J. Appl. Phys. 101, 053113 (2007).
http://dx.doi.org/10.1063/1.2710780
65.
65. X. He, G. Yu, and J. Mazumder, “ Temperature and composition profile during double-track laser cladding of H13 tool steel,” J. Phys. D 43, 015502 (2010).
http://dx.doi.org/10.1088/0022-3727/43/1/015502
66.
66. P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A. Longuet, “ Analytical and numerical modelling of the direct metal deposition laser process,” J. Phys. D 41, 025403 (2008).
http://dx.doi.org/10.1088/0022-3727/41/2/025403
67.
67. S. Y. Wen and Y. C. Shin, “ Modeling of transport phenomena during the coaxial laser direct deposition process,” J. Appl. Phys. 108, 044908 (2010).
http://dx.doi.org/10.1063/1.3474655
68.
68. S. Y. Wen and Y. C. Shin, “ Comprehensive predictive modeling and parametric analysis of multitrack direct laser deposition processes,” J. Laser Appl. 23, 022003 (2011).
http://dx.doi.org/10.2351/1.3567962
69.
69. S. Wen and Y. C. Shin, “ Modeling of the off-axis high power diode laser cladding process,” J. Heat Transfer 133, 03100710 (2011).
http://dx.doi.org/10.1115/1.4002447
70.
70. S. Wen and Y. C. Shin, “ Modeling of transport phenomena in direct laser deposition of metal matrix composite,” Int. J. Heat Mass Transfer 54, 53195326 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.08.011
71.
71. M. Alimardani, V. Fallah, M. Iravani-Tabrizipour, and A. Khajepour, “ Surface finish in laser solid freeform fabrication of an AISI 303L stainless steel thin wall,” J. Mater. Process. Technol. 212, 113119 (2012).
http://dx.doi.org/10.1016/j.jmatprotec.2011.08.012
72.
72. M. Gharbi, P. Peyre, C. Gorny, M. Carin, S. Morville, P. Le Masson, D. Carron, and R. Fabbro, “ Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti-6Al-4V alloy,” J. Mater. Process. Technol. 213, 791800 (2013).
http://dx.doi.org/10.1016/j.jmatprotec.2012.11.015
73.
73. P. Peyre, M. Gharbi, C. Gorny, M. Carin, S. Morville, D. Carron, P. Le Masson, T. Malot, and R. Fabbro, “ Surface finish issues after direct metal deposition,” Mater. Sci. Forum 706–709, 228233 (2012).
http://dx.doi.org/10.4028/www.scientific.net/MSF.706-709.228
74.
74. J. Ibarra-Medina, M. Vogel, and A. J. Pinkerton, “ A CFD model of laser cladding: From deposition head to melt pool dynamics,” in 30th International Congress on Applications of Lasers and Electro-optics (ICALEO) (LIA, Orlando, FL, 2011), p. 708.
75.
75. L. Han, K. M. Phatak, and F. W. Liou, “ Modeling of laser deposition and repair process,” J. Laser Appl. 17, 8999 (2005).
http://dx.doi.org/10.2351/1.1848523
76.
76. J. Ibarra-Medina, A. J. Pinkerton, M. Vogel, and N. N'Dri, “ Transient modelling of laser deposited coatings,” in 26th International Conference on Surface Modification Technologies (Valardocs, India, 2012).
77.
77. G. Palumbo, S. Pinto, and L. Tricarico, “ Numerical finite element investigation on laser cladding treatment of ring geometries,” J. Mater. Process. Technol. 155, 14431450 (2004).
http://dx.doi.org/10.1016/j.jmatprotec.2004.04.360
78.
78. H.-Y. Zhao, H.-T. Zhang, C.-H. Xu, and X.-Q. Yang, “ Temperature and stress fields of multi-track laser cladding,” Trans. Nonferrous Met. Soc. China 19, s495s501 (2009).
http://dx.doi.org/10.1016/S1003-6326(10)60096-9
79.
79. G. Yang, W. Wang, L. Qin, and X. Wang, “ Numerical simulation temperature field of laser cladding titanium alloy,” in Applied Mechanics and Materials (Trans Tech Publications Inc., Durnten-Zurich, Switzerland, 2012), Vol. 117–119, pp. 16331637.
80.
80. A. Nickel, D. Barnett, G. Link, and F. Prinz, “ Residual stresses in layered manufacturing,” in 10th Solid Freeform Fabrication Symposium, (University of Texas, Austin TX, 1999), pp. 239246; available online at http://utwired.engr.utexas.edu/lff/symposium/proceedingsArchive/pubs/Table%20of%20Contents/1999_TOC.cfm.
81.
81. A. H. Nickel, D. M. Barnett, and F. B. Prinz, “ Thermal stresses and deposition patterns in layered manufacturing,” Mater. Sci. Eng. A 317, 5964 (2001).
http://dx.doi.org/10.1016/S0921-5093(01)01179-0
82.
82. R. Jendrzejewski, G. Sliwinski, M. Krawczuk, and W. Ostachowicz, “ Temperature and stress fields induced during laser cladding,” Comput. Struct. 82, 653658 (2004).
http://dx.doi.org/10.1016/j.compstruc.2003.11.005
83.
83. S. Ghosh and J. Choi, “ Modeling and experimental verification of transient/residual stresses and microstructure formation of multi-layer laser aided DMD process,” J. Heat Transfer 128, 662679 (2006).
http://dx.doi.org/10.1115/1.2194037
84.
84. M. Labudovic, D. Hu, and R. Kovacevic, “ A three dimensional model for direct laser metal powder deposition and rapid prototyping,” J. Mater. Sci. 38, 3549 (2003).
http://dx.doi.org/10.1023/A:1021153513925
85.
85. P. Rangaswamy, M. L. Griffith, M. B. Prime, T. M. Holden, R. B. Rogge, J. M. Edwards, and R. J. Sebring, “ Residual stresses in LENS (R) components using neutron diffraction and contour method,” Mater. Sci. Eng., A 399, 7283 (2005).
http://dx.doi.org/10.1016/j.msea.2005.02.019
86.
86. R. J. Moat, A. J. Pinkerton, L. Li, P. J. Withers, and M. Preuss, “ Residual stresses in laser direct metal deposited Waspaloy,” Mater. Sci. Eng. A 528, 22882298 (2011).
http://dx.doi.org/10.1016/j.msea.2010.12.010
87.
87. S. H. Mok, G. Bi, J. Folkes, I. Pashby, and J. Segal, “ Deposition of Ti–6Al–4V using a high power diode laser and wire, Part II: Investigation on the mechanical properties,” Surf. Coat. Technol. 202, 46134619 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2008.03.028
88.
88. E. Brandl, F. Palm, V. Michailov, B. Viehweger, and C. Leyens, “ Mechanical properties of additive manufactured titanium (Ti–6Al–4V) blocks deposited by a solid-state laser and wire,” Mater. Des. 32, 46654675 (2011).
http://dx.doi.org/10.1016/j.matdes.2011.06.062
89.
89. B. Baufeld, E. Brandl, and O. van der Biest, “ Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition,” J. Mater. Process. Technol. 211, 11461158 (2011).
http://dx.doi.org/10.1016/j.jmatprotec.2011.01.018
90.
90. B. Baufeld, O. V. d. Biest, and R. Gault, “ Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: Microstructure and mechanical properties,” Mater. Des. 31(1), S106S111 (2010).
http://dx.doi.org/10.1016/j.matdes.2009.11.032
91.
91. M. Gaumann, C. Bezencon, P. Canalis, and W. Kurz, “ Single-crystal laser deposition of superalloys: Processing-microstructure maps,” Acta Mater. 49, 10511062 (2001).
http://dx.doi.org/10.1016/S1359-6454(00)00367-0
92.
92. X. Do, D. Li, A. Zhang, B. He, H. Zhang, and T. Doan, “ Investigation on multi-track multi-layer epitaxial growth of columnar crystal in direct laser forming,” J. Laser Appl. 25, 012007 (2013).
http://dx.doi.org/10.2351/1.4788595
93.
93. R. Vilar, E. C. Santos, P. N. Ferreira, N. Franco, and R. C. da Silva, “ Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding,” Acta Mater. 57, 52925302 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.06.049
94.
94. M. Rombouts, G. Maes, M. Mertens, and W. Hendrix, “ Laser metal deposition of Inconel 625: Microstructure and mechanical properties,” J. Laser Appl. 24, 052007 (2012).
95.
95. A. Clare, O. Olusola, J. Folkes, and P. Farayibi, “ Laser cladding for railway repair and preventative maintenance,” J. Laser Appl. 24, 032004 (2012).
http://dx.doi.org/10.2351/1.4710578
96.
96. L. Wang and S. Felicelli, “ Process modeling in laser deposition of multilayer SS410 steel,” ASME J. Manuf. Sci. Eng. 129, 10281034 (2007).
http://dx.doi.org/10.1115/1.2738962
97.
97. R. Colaco and R. Vilar, “ Phase selection during solidification of AISI 420 and AISI 440C tool steels,” Surf. Eng. 12, 319325 (1996).
98.
98. J. Ahlström, B. Karlsson, and S. Niederhauser, “ Modelling of laser cladding of medium carbon steel–A first approach,” J. Physique IV, 120, 405412 (2004).
99.
99. Y. Lei, R. Sun, Y. Tang, and W. Niu, “ Numerical simulation of temperature distribution and TiC growth kinetics for high power laser clad TiC/NiCrBSiC composite coatings,” Opt. Laser Technol. 44, 11411147 (2012).
http://dx.doi.org/10.1016/j.optlastec.2011.09.030
100.
100. N. Pirch, S. Keutgen, S. Gasser, K. Wissenbach, and I. Kelbassa, “ Modeling of coaxial single and overlap-pass cladding with laser radiation,” in Proceedings of the 37th International MATADOR Conference, edited by S. Hinduja and L. Li (Springer, London, 2013), pp. 337391.
101.
101. F. Bruckner, D. Lepski, and E. Beyer, “ Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding,” J. Therm. Spray Technol. 16, 355373 (2007).
http://dx.doi.org/10.1007/s11666-007-9026-7
102.
102. M. Alimardani, E. Toyserkani, and J. P. Huissoon, “ A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process,” Opt. Lasers Eng. 45, 11151130 (2007).
http://dx.doi.org/10.1016/j.optlaseng.2007.06.010
103.
103. H. K. D. H. Bhadeshia, “ Mathematical models in materials science,” Mater. Sci. Technol. 24, 128136 (2008).
http://dx.doi.org/10.1179/174328407X213107
104.
104. E. Toyserkani and A. Khajepour, “ A mechatronics approach to laser powder deposition process,” Mechatronics 16, 631641 (2006).
http://dx.doi.org/10.1016/j.mechatronics.2006.05.002
105.
105. A. Fathi, A. Khajepour, M. Durali, and E. Toyserkani, “ Geometry control of the deposited layer in a nonplanar laser cladding process using a variable structure controller,” ASME J. Manuf. Sci. Eng. 130, 031003 (2008).
http://dx.doi.org/10.1115/1.2823085
106.
106. D. Salehi and M. Brandt, “ Melt pool temperature control using LabVIEW in Nd:YAG laser blown powder cladding process,” Int. J. Adv. Manuf. Technol. 29, 273278 (2006).
http://dx.doi.org/10.1007/s00170-005-2514-3
107.
107. L. Song, V. Bagavath-Singh, B. Dutta, and J. Mazumder, “ Control of melt pool temperature and deposition height during direct metal deposition process,” Int. J. Adv. Manuf. Technol. 58, 247256 (2012).
http://dx.doi.org/10.1007/s00170-011-3395-2
108.
108. L. Tang and R. G. Landers, “ Layer-to-Layer Height Control for Laser Metal Deposition Process,” J. Manuf. Sci. Eng. 133, 021009 (2011).
http://dx.doi.org/10.1115/1.4003691
109.
109. D. Hu and R. Kovacevic, “ Sensing, modeling and control for laser-based additive manufacturing,” Int. J. Mach. Tools Manuf. 43, 5160 (2003).
http://dx.doi.org/10.1016/S0890-6955(02)00163-3
110.
110. T. Lie, R. Jianzhong, T. E. Sparks, R. G. Landers, and F. Liou, “ Layer-to-layer height control of laser metal deposition processes,” in American Control Conference, 2009. ACC '09 (IEEE, 2009), pp. 55825587.
http://aip.metastore.ingenta.com/content/lia/journal/jla/27/S1/10.2351/1.4815992
Loading
/content/lia/journal/jla/27/S1/10.2351/1.4815992
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/lia/journal/jla/27/S1/10.2351/1.4815992
2014-12-09
2016-09-30

Abstract

This paper provides a review of the current state of the art in modeling of laser direct metal deposition and cladding processes and identifies recent advances and trends in this field. The different stages of the process and the features, strengths and weaknesses of models relating to them are discussed. Although direct metal deposition is now firmly in the industrial domain, the benefits to be gained from reliable predictive modeling of the process are still to be fully exploited. The genuine progress there has been in this field in the last five years, particularly in discretized modeling, means modeling cannot be overlooked as an enabling method for academia and industry, but there is still more work to be done.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/27/S1/1.4815992.html;jsessionid=7t1RGbwC6Dnbrx4pQYZjD6b1.x-aip-live-06?itemId=/content/lia/journal/jla/27/S1/10.2351/1.4815992&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=Lia.aip.org/27/S1/10.2351/1.4815992&pageURL=http://scitation.aip.org/content/lia/journal/jla/27/S1/10.2351/1.4815992'
Right1,Right2,