Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. B. Henderson, D. Arrell, R. Larsson, M. Heobel, and G. Marchant, “ Nickel based superalloy welding practices for industrial gas turbine applications,” Sci. Technol. Weld. Join. 9, 1321 (2004).
2. M. Durand-Charre, The Microstructure of Superalloys (CRC Press, Boca Raton, FL, 1998).
3. H. Qi, M. Azer, and A. Ritter, “ Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718,” Metall. Mater. Trans. A 40, 24102422 (2009).
4. C. P. Paul, P. Ganesh, S. K. Mishra, P. Bhargava, J. Negi, and A. K. Nath, “ Investigating laser rapid manufacturing for Inconel 625 components,” Opt. Laser Technol. 39, 800805 (2007).
5. G. P. Dinda, A. K. Dasgupta, and J. Mazumder, “ Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability,” Mater. Sci. Eng. A 509, 98104 (2009).
6. N. I. S. Hussein, J. Segal, D. G. McCartney, and I. R. Pashby, “ Microstructure formation in Waspaloy multilayer builds following direct metal deposition with laser and wire,” Mater. Sci. Eng. A 497, 260269 (2008).
7. Q.-L. Zhang, J.-H. Yao, and J. Mazumder, “ Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy,” J. Iron Steel Res. Int. 18, 7378 (2011).
8. J. Chen and L. Xue, “ Process-induced microstructural characteristics of laser consolidated IN-738 superalloy,” Mater. Sci. Eng. A 527, 73187328 (2010).
9. A. Theriault, L. Xue, and J. R. Dryden, “ Fatigue behavior of laser consolidated IN-625 at room and elevated temperatures,” Mater. Sci. Eng. A 516, 217225 (2009).
10. R. M. Macintyre, “ The use of lasers in Rolls-Royce,” Laser Surface Treatment of Metals (Martinus Nijhoff Publishers, Dordrecht, 1986), pp. 545550.
11. R. H. Hayes, “ Laser powder fusion/an innovative technology for the gas turbine component repair industry,” World Aviation Gas Turbine Engine Overhaul and Repair 97 (Gorham Advanced Materials, Gorham, ME, 1997).
12. L. Sexton, S. Lavin, G. Byrne, and A. Kennedy, “ Laser cladding of aerospace materials,” J. Mater. Proc. Technol. 122, 6368 (2002).
13. F. L. Versnyder and M. E. Shank, “ Development of columnar grain and single crystal high temperature materials through directional solidification,” Mater. Sci. Eng. 6, 213247 (1970).
14. S. S. Babu, S. A. David, J. W. Park, and J. M. Vitek, “ Joining of nickel-base superalloy single crystals,” The Microsctructure and Performance of Joints in High-Temperature Alloys (The Institute of Materials, Minerals, and Mining, London, UK, 2002).
15. M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz, “ Single-crystal laser deposition of superalloys: Processing–microstructure maps,” Acta Mater. 49, 10511062 (2001).
16. M. Gäumann, S. Henry, F. Cléton, J.-D. Wagnière, and W. Kurz, “ Epitaxial laser metal forming: analysis of microstructure formation,” Mater. Sci. Eng. A 271, 232241 (1999).
17. M. Gäumann, P.-H. Journeau, J.-D. Wagnière, and W. Kurz, “ Epitaxial laser metal forming on a single crystal superalloy,” in Proceedings of Laser Assisted Net Shape Engineering 2, LANE'97, Erlangen (Germany), 23–26 September 1997 (Meisenbach, Bamberg, Germany, 1997), pp. 651657.
18. C. Bezençon, A. Schnell, and W. Kurz, “ Epitaxial deposition of MCrAlY coatings on a Ni-base superalloy by laser cladding,” Scr. Mater. 49, 705709 (2003).
19. C. Bezençon, J.-D. Wagnière, S. Mokadem, M. Konter, and W. Kurz, “ Laser processing of single crystal superalloys,” in Proceedings of Laser Assisted Net Shape Engineering 3, Erlangen, Germany, 28–31 August 2001 (Meisenbach Verlag, Bamberg, Germany, 2001), pp. 211222.
20. R. Vilar, E. C. Santos, P. N. Ferreira, N. Franco, and R. C. da Silva, “ Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding,” Acta Mater. 57, 52925302 (2009).
21. E. Santos, K. Kida, P. Carroll, and R. Vilar, “ Optimization of laser deposited Ni-based single crystal superalloys microstructure,” Adv. Mater. Res. 154–155, 14051414 (2011).
22. L. Felberbaum, K. Voisey, M. Gäumann, B. Viguier, and A. Mortensen, “ Thermal fatigue of single-crystalline superalloy CMSX-4: A comparison of epitaxial laser-deposited material with the base single crystal,” Mater. Sci. Eng. A 299, 152156 (2001).
23. D. Walton and B. Chalmers, “ The origin of the preferred orientation in the columnar zone of ingots,” Trans. Am. Inst. Min. Metall. Eng. 215, 447457 (1959).
24. N. D'Souza, M. G. Ardakani, M. McLean, and B. A. Shollock, “ Directional and single-crystal solidification of Ni-base superalloys: Part I. The role of curved isotherms on grain selection,” Metall. Mater. Trans. A 31, 28772886 (2000).
25. D. N. Lee, K. H. Kim, Y. G. Lee, and C. H. Choi, “ Factors determining crystal orientation of dendritic growth during solidification,” Mater. Chem. Phys. 47, 154158 (1997).
26. O. Grøng, Metallurgical Modelling of Welding (The Institute of Materials, London, 1994).
27. M. Rappaz, S. A. David, J. M. Vitek, and L. A. Boatner, “ Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds,” Metall. Trans. A 20, 11251138 (1989).
28. R. Vilar, “ Laser cladding,” J. Laser Appl. 11, 6479 (1999).
29. I. Markov, Crystal Growth for Beginners (World Scientific, Singapore, 2004).
30. F. C. Frank and J. H. van der Merwe, “ One-dimensional dislocations. I. Static theory,” in Proceedings of the Royal Society of London (The Royal Society, London, UK, 1949), pp. 205216.
31. M. Rappaz, S. A. David, J. M. Vitek, and L. A. Boatner, “ Analysis of solidification microstructures in Fe-Ni-Cr single-crystal welds,” Metall. Trans. A 21, 17671782 (1990).
32. S. A. David, J. M. Vitek, M. Rappaz, and L. A. Boatner, “ Microstructure of stainless steel single-crystal electron beam welds,” Metall. Trans. A 21, 17531766 (1990).
33. W. Kurz, B. Giovanola, and R. Trivedi, “ Theory of microstructural development during rapid solidification,” Acta Metall. 34, 823830 (1986).
34. J. D. Hunt, “ Steady state columnar and equiaxed growth of dendrites and eutectic,” Mater. Sci. Eng. 65, 7583 (1984).
35. S. Mokadem, C. Bezençon, J.-M. Drezet, A. Jacot, J.-D. Wagnière, and W. Kurz, “ Microstructure control during single crystal welding and deposition of Ni-base superalloys,” in TMS Annual Meeting, Charlotte, NC, 14–18 March 2004 (The Minerals, Metals & Materials Society, Warrendale, PA, 2004), pp. 6775.
36. E. W. Ross and K. S. O'Hara, “ René N4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength,” in Superalloys 1996 – Eighth International Symposium on Superalloys, Champion, PA, 22–26 September 1996 (The Minerals, Metals & Materials Society, Warrendale, PA, 1996), pp. 1926.
37. R. C. Reed, The Superalloys, Fundamentals and Applications (Cambridge University Press, Cambridge, UK, 2006).
38. E. Scheil, “ Bemerkungen zur schichtkristallbildung,” Z. Metallkd. 34, 7072 (1942).

Data & Media loading...


Article metrics loading...



Laser powder deposition is one of the most promising methods for the repairing of the single crystal Ni-based superalloys components used in the hot-section of gas turbine engines in order to extend their lifetime and reduce their overall cost. The microstructure of Ni-based superalloys deposited on single crystal substrates of similar materials depends mainly on the materials involved, on the orientation of the deposited tracks in relation to the substrate and on the deposition parameters. In the present paper these relations are discussed and illustrated for the case of single and multiple layer depositions of NiCrAlY and Rene N4 on (100) single crystal substrates of SRR99 and CMSX-4 Ni-based superalloys. On the other hand, when the aging treatment is applied directly to the solidification microstructure resulting from laser deposition, abnormal /microstructures may result, due to the inhomogeneity created by alloying elements partition during solidification. Performing a homogenization annealing before aging circumvents this difficulty. The homogenizing annealing also eliminates undesirable brittle phases present in the solidification microstructure, such as carbides and topologically close-packed compounds.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd