Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. L. Gulick, G. A. Gescheider, and R. D. Frisina, Hearing ( Oxford University Press, Oxford, 1989).
2. T. Lenarz, “ Funktionsersatz des Innenohres,” in Medizintechnik—Life Science Engineering, edited by E. Wintermantel and H. Suk-Woo, 5. Auflage ( Springer-Verlag, Berlin, 2009).
3. R. Mühler and M. Ziese, Technischer Leitfaden Cochlea Implantat ( Universitäts-HNO-Klinik, Magdeburg, 2010).
4. P. S. Roland and C. G. Wright, “ Surgical aspects of cochlear implantation: Mechanisms of insertional trauma,” Adv. Otorhinolaryngol. 64, 1130 (2006).
5. K. Bhattacharya, “ Micro structure of martensite: Why it forms and how it gives rise to the shape-memory effect,” Oxford Series on Materials Modelling, Vol. 2 ( Oxford University Press, Oxford, 2003).
6. E. K. Freiberg, S. Bremer-Streck, M. Kiehntopf, M. Rettenmayr, and A. Undisz, “ Effect of thermomechanical pre-treatment on short- and long-term Ni release from biomedical NiTi,” Acta Biomaterialia 105, 22902295 (2014).
7. B. K. Chen, H. N. Kha, and G. M. Clark, “ Development of a steerable cochlear implant electrode array,” IFMBE Proc. 15, 607610 (2007).
8. K. S. Min, S. B. Jun, Y. S. Lim, S.-I. Park, and S. J. Kim, “ Modiolus-Hugging intracochlear electrode array with shape memory alloy,” Comput. Math. Methods Med. 2013, Article ID 250915, 9 (2013).
9. S. Dudziak, M. Gieseke, H. Haferkamp, S. Barcikowski, and D. Kracht, “ Functionality of laser-sintered shape memory micro-actuators,” Physics Procedia 5, S607S615 (2010).
10. T. Bormann, R. Schumacher, B. Müller, and M. de Wild, Beeinflussung von Eigenschaften SLM gefertigter NiTi Strukturen ( Rapid Tech, 2012).
11. M. I. Khan, A. Pequegnat, and Y. N. Zhou, “ Multiple memory shape memory alloys,” Adv. Eng. Mater. 15, 386393 (2013).
12. S. Dudziak, “ Beeinflussung der funktionellen Eigenschaften aktorischer Nickel-Titan-Legierungen durch die aktiven Parameter im Mikrolaserschmelzprozess,” Berichte aus dem LZH Band 04/2012 ISBN-10: 3943104435.
13. H. Meier, C. Haberland, and J. Frenzel, “ Structural and functional properties of NiTi shape memory alloys produced by selective laser melting,” in Innovative Developments in Virtual and Physical Prototyping (2012).
14. C. Haberland, “ Additive Verarbeitung von NiTi-Formgedächtniswerkstoffen mittels selective laser melting,” Dissertation, Ruhr-Universität Bochum, 2012.
15. D. Kardas, W. Rust, A. Polley, and T. Fabian, “ Materialgesetzentwicklung zur FEM-Simulation des Werkstoffverhaltens von Formgedächtnislegierungen in der Medizintechnik,” in 24th CADFEM User's Meeting 2006, 25–27 October, Stuttgart, Germany.
16.ASTM Standard F2063-05, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants ( ASTM International, West Conshohocken, PA, 2006).

Data & Media loading...


Article metrics loading...



Cochlear implants (CI) are complex medical implants used as a common therapeutic measure for deaf people who suffer from damage to the inner ear. The success of CI insertion, a manual surgery procedure, is highly dependent on the surgeon's experience. Additionally, more precise positioning of the electrode close to the membrane structures could increase the effectiveness of frequency selectivity and stimulus conduction. To overcome these limitations, the degree of deformation of the electrode during its insertion has to be controllable. This ability can be achieved by integrating micro-actuator elements of a nickel titanium (NiTi) shape memory alloy (SMA) inside the electrode. These elements are manufactured using selective laser micromelting (SLμM). Initially, different concepts of activation mechanisms for SMA actuators for CI electrodes are discussed. Following the rules of additive manufacturing on a microscale, the corresponding actuator design and manufacturing strategies are presented. Suitable SLμM process parameters to achieve high spatial resolution are identified. Due to the high process temperatures, material chemical properties, respectively, its functional behavior, may be affected using SLμM. Therefore, analyses of SLμM NiTi parts manufactured using carrier gas hot extraction as well as differential scanning calorimetry (DSC) are carried out. Force measurements verify the available recovery forces of the produced micro-actuators activated thermally by one way effect. A suitable additive manufacturing strategy that allows the repeatable production of micro-actuators at a resolution of less than 100 m could be evaluated. Different anatomical geometries could be transferred from clinical data model to the manufacturing process. The processed NiTi parts meet the requirements of the ASTM F2063 concerning oxygen inclusion, which is an important condition to preserve shape memory functionality. DSC analyses reflect stable functional properties of the processed NiTi alloy independent of the adjusted laser parameters. Phase transformation of actuators could be actively proved using electrical current and passively using an external heat source.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd