Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/lia/journal/jla/27/S2/10.2351/1.4906389
1.
1. S. Jansen, Generative Fertigung von Konturnah Temperierten Werkzeugen Mittels Selective Laser Melting ( RWTH Aachen, Shaker-Verlag, Aachen, Germany, Theses, 2013).
2.
2. C. Over, Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4 mitSelective Laser Melting” ( RWTH Aachen, Shaker-Verlag, Aachen, Germany, Theses, 2003).
3.
3. S. Bremen, D. Buchbinder, W. Meiners, and K. Wissenbach, “ Selective laser melting - A manufacturing method for series production?”, in Fraunhofer Direct Digital Manufacturing Conference, Berlin (2012).
4.
4. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and I. Böltmann, “ High power selective laser melting (HP SLM) of aluminum parts,” Phys. Procedia 12(1), 271278 (2011).
http://dx.doi.org/10.1016/j.phpro.2011.03.035
5.
5. J. H. Schleifenbaum, J. Theis, W. Meiners, K. Wissenbach, A. Diatlov, J. Bültmann, and H. Voswinckel, “ High power selective laser melting (HP SLM) - Upscaling the productivity of additive metal manufacturing towards factor 10,” in Proceedings of Solid Freeform Fabrication Symposium (SFF), Austin/Tex (2010).
6.
6. J. H. Schleifenbaum, Verfahren und Maschine zur Individualisierten Produktion mit High Power Selective Laser Melting ( RWTH Aachen, Shaker-Verlag, Aachen, Germany, Theses, 2012).
7.
7. E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, “ Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior,” Mater. Des. 34, 159169 (2012).
http://dx.doi.org/10.1016/j.matdes.2011.07.067
8.
8. D. Buchbinder, W. Meiners, K. Wissenbach, K. Müller-Lohmeier, and E. Brandl, “ Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM),” in Aluminium Alloys, edited by J. Hirsch ( Wiley, 2008), Vol. 2, pp. 23942400.
9.
9. N. Skrynecki, E. Brandl, K. Müller-Lohmeier, W. Meiners, and K. Wissenbach, “ Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM),” in 4th International Conference on Rapid Manufacturing, Loughborough, 8 and 9 July 2009, pp. 112.
10.
10. D. Buchbinder, G. Schilling, W. Meiners, N. Pirch, and K. Wissenbach, “ Untersuchung zur reduzierung des verzugs durch vorwärmung bei der Herstellung von aluminiumbauteilen mittels SLM,” RTejournal - Forum für Rapid Technologie 8(1), 3 (2011).
11.
11. D. Buchbinder, Selective Laser Melting von Aluminiumgusslegierungen ( RWTH Aachen, Shaker-Verlag, Aachen, Germany, theses, 2013).
12.
12. L. Thijs, K. Kempen, J. P. Kruth, and J. Van Humbeeck, “ Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder,” Acta Mater. 61(5), 18091819 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.11.052
13.
13. K. Kempen, L. Thijs, J. Van Humbeeck, and J. P. Kruth, “ Mechanical properties of AlSi10Mg produced by selective laser melting,” Phys. Procedia 39, 439446 (2012).
http://dx.doi.org/10.1016/j.phpro.2012.10.059
14.
14. K. Kempen, L. Thijs, E. Yasa, and J.-P. Kruth, “ Microstructural analysis and process optimization for selective laser melting of AlSi10Mg,” in Annual International Solid Freeform Fabrication Symposium (2011), Vol. 22.
15.
15. D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, and J. Schrage, “ Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting (SLM),” J. Laser Appl. 26, 012004 (2014).
http://dx.doi.org/10.2351/1.4828755
16.
16. W. Meiners, Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe ( RWTH Aachen, Shaker-Verlag, Aachen, Germany, Theses, 1999).
17.
17. O. Rehme and C. Emmelmann, “ Rapid manufacturing of lattice structures with selective laser melting,” Proc. SPIE 6107, 61070k (2006).
http://dx.doi.org/10.1117/12.645848
18.
18. J. T. Sehrt and G. Witt, “ Auswirkung des anisotropen Gefüges strahlgeschmolzener Bauteile auf mechanische Eigenschaftswerte,” in 5th Rapid.Tech, User's Conference for Rapid Technology (2009).
19.
19. I. Uckelmann, Generative Serienfertigung von individuellen Produkten aus CoCr mit dem Selektiven Laser-Schmelzen ( RWTH Aachen, Shaker-Verlag, Aachen, Germany, Theses, 2007).
20.
20. F. Wang, X. H. Wu, and D. A. F. Clark, “ On direct laser deposited Hastelloy X: Dimension, surface finish, microstructure and mechanical properties,” Mater. Sci. Technol. 27(1), 344356 (2011).
http://dx.doi.org/10.1179/026708309X12578491814591
21.
21. F. Wang, “ Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology,” Int. J. Adv. Manuf. Technol. 58, 17 (2011).
http://dx.doi.org/10.1007/s00170-011-3423-2
22.
22. T. Wirtz, Herstellung von Knochenimplantaten aus Titanwerkstoffen durch Laserformen ( RWTH Aachen, Aachen, Germany, Theses, 2006).
http://aip.metastore.ingenta.com/content/lia/journal/jla/27/S2/10.2351/1.4906389
Loading
/content/lia/journal/jla/27/S2/10.2351/1.4906389
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/lia/journal/jla/27/S2/10.2351/1.4906389
2015-02-26
2016-09-26

Abstract

The additive production technology selective laser melting (SLM) is used for direct fabrication of metal-based functional components. SLM is one of the powder-bed based AM technologies. SLM is well established in serial production for dental restoration as well as for tooling. Main concern for industrial application remains the scope of processible materials and resulting mechanical properties. Toward processing of aluminum alloys commercially available systems exist with comparability in terms of applied process parameters and resulting mechanical properties remaining a challenge. Often no data are available concerning process parameters and mechanical properties. This holds especially for high-power SLM systems with increased build rates as a result of extended laser powers of up to 1 kW. Especially when processing aluminum alloys, the solidification conditions significantly affect the resulting microstructure in terms of size of dendrites and grains. Consequently, the present paper systematically investigates and correlates the process parameters (e.g., laser power, scan speed, layer orientation, preheating, etc.) on the microstructure (electron backscatter diffraction and texture) and resultant mechanical properties (hardness, tensile strength, yield strength, and breaking elongation) for aluminum die-cast alloys. At this, underlying phenomena for typically observed anisotropy of mechanical properties in dependence on layer orientation are further specified.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/27/S2/1.4906389.html;jsessionid=O1wg-DQ4H6YDYB1YLNk3VwlX.x-aip-live-02?itemId=/content/lia/journal/jla/27/S2/10.2351/1.4906389&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=Lia.aip.org/27/S2/10.2351/1.4906389&pageURL=http://scitation.aip.org/content/lia/journal/jla/27/S2/10.2351/1.4906389'
Right1,Right2,