Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/lia/journal/jla/27/S2/10.2351/1.4906474
1.
1. Y. Zhou, Microjoining and Nanojoining ( Woodhead Publishing Ltd, Cambridge, England, 2008).
2.
2. F. Vollertsen, F. Wagner, and C. Thomy, “ Micro welding for environmental-friendly products,” in Proceeding of 26th International Congress on Applications of Lasers and Electro-Optics (ICALEO), Orlando (2007), Vol. 308, pp. 143148, LIA Publication No. 610 (CD).
3.
3. A. Patschger, J. Bliedtner, and J. P. Bergmann, “ Process-limiting factors and characteristics of laser-based micro welding,” Phys. Procedia 56, 740749 (2014).
http://dx.doi.org/10.1016/j.phpro.2014.08.081
4.
4. M. Wautelet, “ Scaling laws in the macro-, micro- and nanoworlds,” Eur. J. Phys. 22, 601611 (2001).
http://dx.doi.org/10.1088/0143-0807/22/6/305
5.
5. C. Thomy, F. Möller, and F. Vollertsen, “ Distortion effects in micro welding with fibre laser,” in Proceeding of 29th International Congress on Applications of Lasers and Electro-Optics (ICALEO), Anaheim (2010), Vol. 301, pp. 8590, LIA Publication No. 613 (CD).
6.
6. A. Patschger, J. Bliedtner, and J. P. Bergmann, “ Approaches to increase process efficiency in laser micro welding,” Phys. Procedia 41, 592602 (2013).
http://dx.doi.org/10.1016/j.phpro.2013.03.121
7.
7.Micromanufacturing Engineering and Technology, edited by Y. Qin ( Elsevier, Oxford, 2010), p. 196.
8.
8. A. Patschger, J. P. Bergmann, and J. Bliedtner, “ Flexible and efficient laser remote welding of ultra-thin metal foils,” J. Laser Appl. 24, 052005 (2012).
http://dx.doi.org/10.2351/1.4746453
9.
9.Patent DE2727967C2, the monolithic metal catalyst to detoxify the exhaust gases of internal combustion engines, especially in motor vehicles, as well as methods for the manufacture thereof.
10.
10. U. Dürr, R. Holtz, and T. Westphäling, “ Industrielle Anwendungslösungen mit gepulsten Nd:YAG Lasern (industrial application solutions involving pulsed Nd:YAG lasers),” in Strahltechnik (Beam Technology), Vol. 28: Tagungsband zum 5. Laser Anwenderforum (Conference Transcript of the 5th Laser User Forum) (BIAS-Verlag Publishing House, Bremen, 2006).
11.
11. H. Hanebuth and F. Lupp, Abschlussbericht zum FuE-Vorhaben 13 N 8990 im Verbundprojekt “Schädigungsarmes und produktives Mikroschweißen mit brillanten Strahlquellen”—SCHARP, Teilvorhaben: “Grundlagen für Applikationen im Medizin- und Automobilbereich” (Final Report on the R&D Project 13N 8990 within the Scope of the Joint Research Project “Low-damage and Productive Micro Welding with Brilliant Laser Sources”—SCHARP, Subproject: “Basic Concepts of Applications in Medical and Automotive Sectors”) ( Siemens AG, Munich, 2010).
12.
12. N. Abe, Y. Funada, and M. Tsukamoto, “ Welding of thin foils with elliptical beams,” Trans. JWRI 37(1), 2731 (2008).
13.
13. N. Löffler, “ Laseranwendungen mittels 532 nm in dem Bereich elektronischer Bauteile (laser applications with 532 run in the field of electronic components),” in Tagungsband (Conference Transcript) (LEF) ( Meisenbach, Bamberg, 2012).
14.
14. D. P'ng and P. Molian, “ Q-switch Nd:YAG welding of AISI 304 stainless steel foils,” Mater. Sci. Eng. 486, 680685 (2008).
http://dx.doi.org/10.1016/j.msea.2007.08.063
15.
15. G. Kleemann, “ Voraussetzung für zuverlässige Verbindungen beim Laser-Mikroschweißen (precondition for solid bonds in laser micro welding),” in Tagungsband (Conference Transcript) (LEF) ( Meisenbach, Bamberg, 2012).
16.
16. F. Dausinger, “ Strahlwerkzeug Laser: Energieeinkopplung und Prozeßeffektivität (the laser as a beam tool: Energy coupling and process efficiency),” Habilitation, University of Stuttgart, B.G. Teubner Verlag Publishing House, Stuttgart (1995), p. 87.
17.
17. Y. Okamoto, A. Gillner, A. Olowinsky, J. Gedicke, and Y. Uno, “ Fine micro-welding of thin metal sheet by high speed laser scanning,” Proc. SPIE 6593, 65930D (2007).
http://dx.doi.org/10.1117/12.722161
18.
18. V. A. Ventrella, J. R. Berretta, and W. de Rossi, “ Pulsed Nd:YAG laser seam welding of AISI 316L stainless steel thin foils,” J. Mater. Process. Technol. 210(14), 18381843 (2010).
http://dx.doi.org/10.1016/j.jmatprotec.2010.06.015
19.
19. T. Kannengießer, Untersuchung zur Enstehung schweißbedingter Spannungen und Verformungen bei variablen Einspannbedingungen im Bauteilschweißversuch (Examination on the Development of Tensions and Deformations due to Welding under Variable Clamping Conditions in a Component Welding Test) ( Shaker Verlag Publishing House, Aachen, 2000).
20.
20. T. Loose, A. Patschger, and J. Bliedtner, “ Simulation-aided optimization of a laser-based micro-welding process,” in Thermal Forming and Welding Distortion, Strahltechnik (Beam Technology) ( BIAS Verlag Publishing House, Bremen, 2014), Vol. 54, pp. 141158.
21.
21. H. Wohlfahrt and K. Dilger, “ Eigenspannungen in Schweißverbindungen—ihre Entstehung und Bewertung (residual stresses in welded joints and their development and assessment),” TU Braunschweig: DVS seminar, 2004.
22.
22. K. Satoh, Y. Ueda, and H. Kihara, “ Recent trend of researches on restraint stresses and strains for weld cracking,” Trans. JWRI 1.1(1. Jg., Nr. 1), 5368 (1972).
23.
23. U. Dilthey, Schweißtechnische Fertigungsverfahren 2: Verhalten der Werkstoffe beim Schweißen (Manufacturing Processes Based on Welding Engineering 2: Behavior of Materials during Welding) ( Springer-Verlag GmbH Co. KG Publishing House, Heidelberg, 2005).
24.
24. C. Lachmann, T. Nitschke-Pagel, and H. Wohlfahrt, “ Zum Einfluß von Eigenspannungen und Mikrostruktur auf die Kaltrißneigung hochfester Stähle (on the influence of residual stresses and microstructure on the cold cracking tendency of high-strength steels),” in Eigenspannungen und Verzug durch Wärmeeinwirkungen (Residual Stresses and Distortion due to Heat Exposure), Forschungsbericht (DFG Series Research Report) ( John Wiley & Sons, 1999).
25.
25. D. Radaj, Wärmeeinwirkungen des Schweißens—Temperaturfeld, Eigenspannungen, Verzug (Heat Exposure during Welding—Temperature Field, Residual Stresses, Distortion) ( Springer-Verlag Publishing House, Heidelberg, 1988).
26.
26. R. Brockmann, Beitrag zum Mikronahtschweißen von Edelstahlfolien mittels dioden-gepumptem Nd:YAG-Laser (Micro Welding of Stainless Steel Foils by Means of a Diode-pumped Nd:YAG Laser) ( Shaker Verlag Publishing House, Aachen, 2003).
27.
27. A. C. Lingenfelter, Laser Welding of Thin Cross Sections ( Lawrence Livermore National Laboratory, CA, 1986).
28.
28. R. F. Osborne, “ Clamping of film-like material for radiant energy welding,” U.S. patent 3,997,385 (14 December 1976).
29.
29.Zwischenbericht DüFoS—Effizientes und flexibles Remote-Schweißen von ultradünnen metallischen Folien (DüFoS Interim Report—Efficient and Flexible Remote Welding of Ultrathin Metal Foils), No. KF2242302SU1, 2012.
30.
30.Patent DE 10 2013 019 405.
31.
31. A. Patschger, M. Güpner, J. Bliedtner, and J. P. Bergmann, Remote micro welding with multi-mode and single-mode fiber lasers—A comparison,” in 32nd International Congress on Applications of Lasers and Electro-Optics, Anaheim (2013), Vol. M603, pp. 805–815, LIA Publication No. 616 (CD).
32.
32. S. Strocka, A. Hopf, A. Patschger, J. Bliedtner, M. Hild, and F. Störzner, “ Beitrag zur Prozessentwicklung für das Remote-Laser-Schweißen von dünnen metallischen Folien (contribution to process development for remote laser welding of thin metallic foils),” in 22nd Internationale Wissenschaftliche Konferenz Mittweida (22nd International Scientific Conference in Mittweida), Mittweida, Germany (2012).
33.
33. J. Du, J. Longobardi, W. P. Latham, and A. Kar, “ Laser marginal lap welding for ultrathin sheet metal,” J. Laser Appl. 14(1), 48 (2002).
http://dx.doi.org/10.2351/1.1418705
34.
34. H. Hügel and T. Graf, Laser in der Fertigung—Strahlquellen, Systeme, Fertigungsverfahren (Lasers in Manufacturing—Beam Sources, Systems, Manufacturing Processes), 2nd ed. ( GWV Specialized Publishers, Wiesbaden, 2009).
35.
35. A. Reek, Strategien zur Fokuspositionierung beim Laserstrahlschweißen (Strategies for Focus Positioning in Laser Beam Welding), Forschungsberichte iwb (iwb research reports) ( Herbert-Utz-Verlag Publishing House, 2000), Vol. 138; dissertation, Munich, Technische Universität München, 2000.
http://aip.metastore.ingenta.com/content/lia/journal/jla/27/S2/10.2351/1.4906474
Loading
/content/lia/journal/jla/27/S2/10.2351/1.4906474
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/lia/journal/jla/27/S2/10.2351/1.4906474
2015-02-26
2016-12-11

Abstract

For the purpose of manufacturing lithium ion cells, microwelding is a commonly used procedure. It is also applied to new products as vacuum insulation elements which are enclosed in stainless steel foils. Another new application can be found in welding of catalytic converters. Before, they were usually joined by furnace brazing. All these products consist of thin metal foils which can be considered two-dimensional work pieces. They have to be joined in a stable process in order to avoid rejects. One of the biggest challenges in thermal microwelding is the gap forming between the join partners due to thermally induced distortion. In microwelding, the possibility to bridge the gap between the join partners is ensured as long as the gap is smaller than approximately half of the material thickness. Beyond this point, weld seam imperfections occur and the process collapses. In order to minimize gap formation, a new approach to clamping is presented which directly applies the clamping force in the welding zone. Based on this invention, a clamping fixture was constructed and qualified. Thereby, it is possible to close the gap between join partners and adapt the properties of lap joints to bead-on-plate welds. Furthermore, the new concept was compared to a common clamping fixture. Thus, weldable join partner thickness could be reduced, and the feeding rate was extended.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/27/S2/1.4906474.html;jsessionid=Xy3GFg4viaZV2Qicy9QoAhae.x-aip-live-06?itemId=/content/lia/journal/jla/27/S2/10.2351/1.4906474&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=Lia.aip.org/27/S2/10.2351/1.4906474&pageURL=http://scitation.aip.org/content/lia/journal/jla/27/S2/10.2351/1.4906474'
Right1,Right2,