Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/lia/journal/jla/28/1/10.2351/1.4935196
1.
1. X. G. Liu , P. R. Coxon , M. Peters , B. Hoex , J. M. Cole , and D. J. Frayc , “ Black silicon: Fabrication methods, properties and solar energy applications,” Energy Environ. 7(10), 32233263 (2014).
http://dx.doi.org/10.1039/C4EE01152J
2.
2. S. W. Boettcher , J. M. Spurgeon , and M. C. Putnam , “ Energy-conversion properties of vapor-liquid-solid-Srown silicon wire-array photocathodes,” Science 327(5962), 185187 (2010).
http://dx.doi.org/10.1126/science.1180783
3.
3. J. Jiang , Z. M. Wu , T. Wang , Z. Y. Guo , and H. Yu , “A new revolutionary material—Black silicon,” Mater. Rev. 24(7), 122126 (2010).
4.
4. Z. Huang , J. E. Carey , and M. Liu , “ Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
http://dx.doi.org/10.1063/1.2227629
5.
5. M. Algasinger , J. Paye , and F. Werner , “ Improved black silicon for photovoltaic applications,” Adv. Energy Mater. 3(8), 10681074 (2013).
http://dx.doi.org/10.1002/aenm.201201038
6.
6. T. H. Her , R. J. Finlay , and C. Wu , “ Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 16731675 (1998).
http://dx.doi.org/10.1063/1.122241
7.
7. H. Mei , C. Wang , and J. Yao , “ Development of novel flexible black silicon,” Opt. Commun. 284, 10721075 (2011).
http://dx.doi.org/10.1016/j.optcom.2010.10.024
8.
8. A. V. Kabashin , Ph. Delaporte , and A. Pereira , “ Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454463 (2010).
http://dx.doi.org/10.1007/s11671-010-9543-z
9.
9. J. Yang , F. F. Luo , and T. S. Kao , “ Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
http://dx.doi.org/10.1038/lsa.2014.66
10.
10. Y. R. Jiang , R. P. Qing , and H. G. Yang , “ Alkali-treated Si nanowire array for improving solar cell performance,” Appl. Phys. A 113, 1317 (2013).
http://dx.doi.org/10.1007/s00339-013-7846-5
11.
11. K. Q. Peng , Y. Xu , and Y. Wu , “ Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 10621067 (2005).
http://dx.doi.org/10.1002/smll.200500137
12.
12. Y. R. Jiang , R. P. Qing , and C. X. Bian , “ Texturing of silicon nanowire arrays by post-treatment in alkali solution,” Acta Opt. Sinica 32(8), 08160021 (2012).
http://dx.doi.org/10.3788/aos201232.0816002
13.
13. S. Koynov , M. S. Brandt , and M. Stutzmann , “ Black nonreflecting silicon surface for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
http://dx.doi.org/10.1063/1.2204573
14.
14. S. Koynov , M. S. Brandt , and M. Stutzmann , “ Black multi- crystalline silicon solar cells,” Rapid Res. Lett. 1(2), 5355 (2007).
http://dx.doi.org/10.1002/pssr.200600064
15.
15. H. C. Yuan , V. E. Yost , and M. R. Page , “ Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
http://dx.doi.org/10.1063/1.3231438
16.
16. H. M. Branz , V. E. Yost , and S. Ward , “ Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
http://dx.doi.org/10.1063/1.3152244
17.
17. D. P. Qi , N. Lu , H. B. Xu , B. J. Yang , C. Y. Huang , M. J. Xu , L. G. Gao , Z. X. Wang , and L. F. Chi , “ Simple approach to wafer-scale self-cleaning antireflective silicon surface,” Langmuir 25(14), 77697772 (2009).
http://dx.doi.org/10.1021/la9013009
18.
18. F. L. Yuan , Y. F. Guo , Y. C. Liang , L. Li , and Y. D. Yan , “ Fabricating using AFM and etching on crystalline silicon in alkaline solution and electrochemistry mechanism,” J. Nat. Sci. Heilongjiang Univ. 23(3), 289293 (2006).
http://dx.doi.org/10.13482/j.issn1001-7011.2006.03.002
19.
19. A. Merlos , M. C. Acero , and M. H. Bao , “ A study of the undercutting characteristics in the TMAH-IPA system,” Micromech. Microeng. 2(3), 181183 (1992).
http://dx.doi.org/10.1088/0960-1317/2/3/014
20.
20. C. R. Tellier and A. R. Charbonnieras , “ Characterization of the anisotropic chemical attack of silicon plates in TMAH 25% solution: Micromachining and adequacy of the dissolution slowness surface,” Sens. Actuators, A 105(1), 6275 (2003).
http://dx.doi.org/10.1016/S0924-4247(03)00064-5
21.
21. Y. R. Jiang , R. P. Qin , and C. X. Bian , “ Texturing of silicon nanowire arrays by post-treatment in alkali solution,” Acta Opt. Sinica 32(8), 0816002 (2012).
http://dx.doi.org/10.3788/AOS201232.0816002
22.
22. M. A. Sheehy , L. Winston , J. E. Carey , C. M. Friend , and E. Mazur , “ Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 35823586 (2005).
http://dx.doi.org/10.1021/cm049029i
23.
23. C. Wang , C. M. Lin , and S. Z. Yin , “ Black silicon created by interfered femtosecond laser illumination,” Proc. SPIE 8497(12), 11091124 (2012).
24.
24. R. Younkin , J. E. Carey , and E. Mazur , “ Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond laser pulses,” J. Appl. Phys. 93(5), 26262629 (2003).
http://dx.doi.org/10.1063/1.1545159
25.
25. A. Y. Vorobyev and C. L. Guo , “ Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257, 72917294 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.03.106
26.
26. M. Jiao , S. Hai-ying , L. Song , D. Xiang-Ming , and L. Shi-Bing , “ Spectroscopic characteristic of femtosecond laser fabricating black silicon,” J. Light Scattering 26(2), 154158 (2014).
http://dx.doi.org/10.13883/j.issn1004-5929.201402008
27.
27. M. Y. Shen , C. H. Crouch , and J. E. Carey . “ Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 56945696 (2004).
http://dx.doi.org/10.1063/1.1828575
28.
28. G. Daminelli , J. Krüger , and W. Kautek , “ Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334341 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.04.043
29.
29. M. Zhao , W. F. Su , and L. Zhao , “ Microstructured silicon—A new type of opto-electronic material,” Phys. 32(7), 455457 (2003).
30.
30. B. R. Tull , J. E. Carey , M. A. Sheehy , C. Friend , and E. Mazur , “ Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas,” Appl. Phys. A 83(3), 341346 (2006).
http://dx.doi.org/10.1007/s00339-006-3502-7
31.
31. H. L. He , C. S. Chen , F. Wang , and S. H. Liu , “ Light trapping characteristics of microstructured silicon surface morphology,” Chin. J. Quantum Elect. 28(5), 617621 (2011).
32.
32. B. R. Tull , J. E. Carey , and E. Mazur , “ Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31(6), 626633 (2006).
http://dx.doi.org/10.1557/mrs2006.160
33.
33. W. Wu , J. Xu , and H. Chen , “ Simulation of optical model base on micro-cones structure of black silicon,” Chin. J. Lasers 38(6), 0603029 (2011).
http://dx.doi.org/10.3788/CJL201138.0603029
http://aip.metastore.ingenta.com/content/lia/journal/jla/28/1/10.2351/1.4935196
Loading
/content/lia/journal/jla/28/1/10.2351/1.4935196
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/lia/journal/jla/28/1/10.2351/1.4935196
2015-11-05
2016-09-30

Abstract

A highly efficient approach for reducing the reflection of the black siliconsurface is demonstrated, in which the black silicon is fabricated in alkaline solution via a femtosecond laserirradiation. The junglelike microstructures are formed on the surface of the black silicon. Compared to the polished silicon, the black silicon can significantly suppress the surface reflection. Throughout the region of visible light, the average minimum reflectance of the blackened surface is about 5.6%. Meanwhile, in order to get an optimal laser energy, we investigated the evolution on siliconsurface as a function of incident pulse energy. Taking into account the height of junglelike microstructures and the reflectance of black silicon samples, the optimal laser energy is 1400 J. By choosing the right laser energy, it is possible to fabricate the highly absorptive black silicon. These results are of extreme importance in the control of surface morphology and the modification of materialsurface.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/28/1/1.4935196.html;jsessionid=GW2XHAWzw-NZMeE1m8aXYeej.x-aip-live-02?itemId=/content/lia/journal/jla/28/1/10.2351/1.4935196&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=Lia.aip.org/28/1/10.2351/1.4935196&pageURL=http://scitation.aip.org/content/lia/journal/jla/28/1/10.2351/1.4935196'
Right1,Right2,