Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/lia/journal/jla/28/2/10.2351/1.4939221
1.
1. H. Shen and F. Vollertsen , “ Modelling of laser forming—A review,” Comput. Mater. Sci. 46, 834840 (2009).
http://dx.doi.org/10.1016/j.commatsci.2009.04.022
2.
2. G. Yanjin , “ Influence of material properties on the laser-forming process of sheet metals,” J. Mater. Process. Technol. 167, 124131 (2004).
http://dx.doi.org/10.1016/j.jmatprotec.2004.10.003
3.
3. J. Cheng , “ Process design of laser forming for three-dimensional thin plates,” J. Manuf. Sci. Eng. 126, 217225 (2004).
http://dx.doi.org/10.1115/1.1751187
4.
4. C. Liu , “ Optimal process planning for laser forming of doubly curved shapes,” J. Manuf. Sci. Eng. 126, 19 (2004).
http://dx.doi.org/10.1115/1.1643077
5.
5. H. Shen , “ An analytical model for estimating deformation in laser forming,” Comput. Mater. Sci. 37, 593598 (2006).
http://dx.doi.org/10.1016/j.commatsci.2005.12.030
6.
6. D. Bergstrom , “ Mathematical modelling of laser absorption mechanisms in metals: A review,” Presented at the M4PL16 workshop, Igls, Austria (2008).
7.
7. T. Hennige , S. Holzer , and F. Vollertsen , “ On the working accuracy of laser bending,” J. Mater. Process. Technol. 71, 422432 (1997).
http://dx.doi.org/10.1016/S0924-0136(97)00108-8
8.
8. D. Bergstrom , “ The absorptance of Steels to Nd:YLF and Nd:YAG laser light at room temperature,” Appl. Surf. Sci. 253, 50175028 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.11.018
9.
9. G. Yanjin , “ Laser micro-bending process based on the characteristic of the laser polarization,” J. Mater. Process. Technol. 212, 662671 (2011).
http://dx.doi.org/10.1016/j.jmatprotec.2011.07.010
10.
10.ASM International, “ Introduction to stainless steels,” ASM Specialty Handbook: Stainless Steels ( ASM International, 1994), Vol. 5.
11.
11. C. R. Roger , S. H. Yen , and K. G. Ramanathan , “ Temperature variation of total hemispherical emissivity of stainless steel AISI 304,” Opt. Soc. Am. 69, 13841393 (1979).
http://dx.doi.org/10.1364/JOSA.69.001384
12.
12. D. Celentano , E. Oñate , and S. Oller , “ A temperature-based formulation for finite element analysis of generalized phase-change problems,” Int. J. Numer. Methods Eng. 37, 34413465 (1994).
http://dx.doi.org/10.1002/nme.1620372004
13.
13. V. Stevens , D. Celentano , J. Ramos-Grez , and M. Walczak , “ Experimental and numerical analysis of low output power laser bending of thin steel sheets,” ASME J. Manuf. Sci. Eng. 134, 031010 (2012).
http://dx.doi.org/10.1115/1.4005807
14.
14. C. Carey , “ Effects of laser interaction with graphite coatings,” Laser Assisted Netshape Eng. 5, 673686 (2007).
15.
15. D. Bergstrom , “ A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces,” Applied Physics 101, 113504 (2007).
http://dx.doi.org/10.1063/1.2738417
16.
16. D. Bergstrom , “ Laser absorption measurements in opaque solids,” Presented at the NOLAMP Conference, Pitea, Sweden (2005).
http://aip.metastore.ingenta.com/content/lia/journal/jla/28/2/10.2351/1.4939221
Loading
/content/lia/journal/jla/28/2/10.2351/1.4939221
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/lia/journal/jla/28/2/10.2351/1.4939221
2016-01-04
2016-09-30

Abstract

This work presents an experimental-numerical methodology aimed at deriving the relation between absorptance and incident angle of a randomly polarized Yb fiber-laser beam applied to a graphite-coated stainless steel cold-rolled sheet. The absorptance values were obtained by minimizing the error between temperature evolution measurements at various locations of the irradiated sheet and the corresponding finite element predictions. The absorptance was found to increase from 0.66 to 0.71 in the region between 0° and 10°, to return to the original value between 10° and 20°, to remain relatively constant between 20° and 50°, and then to drop sharply between 50° and 80° finishing at 0.44. Furthermore, the consequences of these results in the laser bending process are analyzed.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/28/2/1.4939221.html;jsessionid=idqSSX16Ixtmy3LxTaPxjtgc.x-aip-live-02?itemId=/content/lia/journal/jla/28/2/10.2351/1.4939221&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=Lia.aip.org/28/2/10.2351/1.4939221&pageURL=http://scitation.aip.org/content/lia/journal/jla/28/2/10.2351/1.4939221'
Right1,Right2,