Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/lia/journal/jla/28/2/10.2351/1.4944448
1.
1. R. Delmdahl, “ Advanced-UV excimer laser processing,” Proc. SPIE 7196, 719608 (2009).
http://dx.doi.org/10.1117/12.807981
2.
2. T. Cacouris and N. Seong, “ Onboard excimer laser metrology advances photolithography,” Laser Focus World 48, 6468 (2012).
3.
3. H. Fukuda, Y. Yoo, Y. Minegishi, N. Hisanaga, and T. Enami, “ Advanced excimer laser technologies enable green semiconductor manufacturing,” Proc. SPIE 9052, 90522J (2014).
http://dx.doi.org/10.1117/12.2054047
4.
4. E. R. Ault, R. S. Bradford, and M. L. Bhaumik, “ High-power xenon fluoride laser,” Appl. Phys. Lett. 27, 413415 (1975).
http://dx.doi.org/10.1063/1.88496
5.
5. G. C. Tisone, A. K. Hays, and J. M. Hoffman, “ 100 mw, 248.4 nm, KrF laser-excited by an electron-beam,” Opt. Commun. 15, 188189 (1975).
http://dx.doi.org/10.1016/0030-4018(75)90281-3
6.
6. C. P. Christensen, R. W. Waynant, and B. J. Feldman, “ High efficiency microwave discharge XeCl laser,” Appl. Phys. Lett. 46, 321323 (1985).
http://dx.doi.org/10.1063/1.95617
7.
7. Y. G. Basov, “ Divergence of excimer laser. A review,” J. Commun. Technol. Electron. 46, 116 (2001).
8.
8. D. A. Aid, Z. Harrache, and A. Belasri, “ Study of streamer development in high-pressure electric discharge: Applications to excimer lasers,” Laser Phys. 17, 1217 (2007).
http://dx.doi.org/10.1134/S1054660X07010033
9.
9. Y. M. Zadiranov, S. G. Kalmykov, M. E. Sasin, and P. Y. Serdobintsev, “ Study of the structure and parameters of a KrF excimer laser beam,” Tech. Phys. 57, 16811686 (2012).
http://dx.doi.org/10.1134/S1063784212120298
10.
10. S. D. Brotherton, D. J. McCulloch, and J. P. Gowers, “ Influence of excimer laser beam shape on poly-Si crystallisation,” Jpn. J. Appl. Phys. 43, 51145121 (2004).
http://dx.doi.org/10.1143/JJAP.43.5114
11.
11. B. Muller, T. Boeck, and C. Hartmann, “ Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy,” J. Cataract Refractive Surg. 30, 464470 (2004).
http://dx.doi.org/10.1016/S0886-3350(03)00559-5
12.
12. V. Sava, C. Ilie, M. Popa, M. Stoica, and M. Udrea, “ Ecimer laser micro-machining optimization using beam homogenizers based optical system,” Proc. SPIE 7469, 74690U (2010).
http://dx.doi.org/10.1117/12.859696
13.
13. V. Kekkonen, A. Hakola, J. Likonen, Y. Ge, and T. Kajava, “ Pulsed laser deposition using diffractively shaped excimer-laser beams,” Appl. Phys. A 108, 423430 (2012).
http://dx.doi.org/10.1007/s00339-012-6904-8
14.
14. A. Masters and T. Geuking, “ Beam shaping optics expand excimer-laser applications,” Laser Focus World 41, 99101 (2005).
15.
15. K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H. J. Kahlert, and H. Hugel, “ Excimer laser beam homogenizer with low divergence,” Appl. Phys. A 69, S315S318 (1999).
http://dx.doi.org/10.1007/s003390051407
16.
16. J. Turunen, P. Paallonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “ Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 24672475 (2000).
http://dx.doi.org/10.1080/09500340008230526
17.
17. Y. Matsuura, D. Akiyama, and M. Miyagi, “ Beam homogenizer for hollow-fiber delivery system of excimer laser light,” Appl. Opt. 42, 35053508 (2003).
http://dx.doi.org/10.1364/AO.42.003505
18.
18. L. Liu, J. Zhou, Y. Deng, H. Liu, L. Lei, and B. Wang, “ Diffraction and shaping analysis of excimer laser through an ultrasonic grating,” Opt. Laser Technol. 58, 7175 (2014).
http://dx.doi.org/10.1016/j.optlastec.2013.11.002
19.
19. F. M. Dickey, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications ( CRC Press, Boca Raton, FL, USA, 2005).
20.
20. D. L. Shealy, “ Historical perspective of laser beam shaping,” Proc. SPIE 4770, 2847 (2002).
http://dx.doi.org/10.1117/12.453505
21.
21. A. Buttner and U. D. Zeitner, “ Wave optical analysis of light-emitting diode beam shaping using microlens arrays,” Opt. Eng. 41, 23932401 (2002).
http://dx.doi.org/10.1117/1.1499975
22.
22. E. Chen, R. Wu, and T. Guo, “ Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321, 7885 (2014).
http://dx.doi.org/10.1016/j.optcom.2014.01.032
23.
23. M. Zimmermann, N. R. V. Lindlein, and K. J. Weible, “ Microlens laser beam homogenizer—From theory to application,” Proc. SPIE 6663, 666302 (2007).
http://dx.doi.org/10.1117/12.731391
24.
24. I. Harder, M. Lano, N. Lindlein, and J. Schwider, “ Homogenization and beam shaping with microlens arrays,” Proc. SPIE 5456, 99107 (2004).
http://dx.doi.org/10.1117/12.549015
25.
25. F. M. Dickey, Laser Beam Shaping: Theory and Techniques, 2nd ed. ( CRC Press, Boca Raton, FL, USA, 2014).
26.
26. J. E. Greivenkamp, Field Guide to Geometrical Optics ( SPIE Press, Bellingham, WA, USA, 2004).
27.
27. S. Glockner and R. Goring, “ Investigation of statistical variations between lenslets of microlens arrays,” Appl. Opt. 36, 44384445 (1997).
http://dx.doi.org/10.1364/AO.36.004438
28.
28. W. J. Smith, Modern Optical Engineering, 4th ed. ( SPIE Press, Bellingham, WA, USA, 2008).
http://aip.metastore.ingenta.com/content/lia/journal/jla/28/2/10.2351/1.4944448
Loading
/content/lia/journal/jla/28/2/10.2351/1.4944448
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/lia/journal/jla/28/2/10.2351/1.4944448
2016-03-31
2016-12-10

Abstract

This paper reports the results of developed microlens beam homogenizer for the 248 nm excimer laser.Excimer laser has a complex irradiance profile, and it is difficult to design a homogenizer for this kind of light source. We present a method to design microlens beam homogenizer according to the propagation properties of the irradiance profile. Since the intensity distribution image of excimer laser raw beam can be photographed by the laser beamanalyzer, we use to analyze the image and extract relevant information to calculate. With the calculated data, we simulate a virtual excimer laser source which has the same irradiance profile as the initial beam. According to the energy spatial distribution characteristics of the virtual excimer laser source, a microlens beam homogenizer is designed. The designed microlens homogenizer has been fabricated and tested. Measurements of the irradiance profile is presented and compared to the ideal design. After shaping and homogenization, a highly uniform beam spot is obtained finally. The profile of this beam spot is a square flat-top with dimensions of approximately 17 × 17 mm2. This optical system can transform approximately 80% of the total input beam power into the work plane of output beam, and beam uniformity of better than ±3% is realized. The successful development of this optical system can provide a technical support for the excimer laser processing with high quality and efficiency.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/28/2/1.4944448.html;jsessionid=wk2zLuugpkFR5f9U7KM02bp3.x-aip-live-02?itemId=/content/lia/journal/jla/28/2/10.2351/1.4944448&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=Lia.aip.org/28/2/10.2351/1.4944448&pageURL=http://scitation.aip.org/content/lia/journal/jla/28/2/10.2351/1.4944448'
Right1,Right2,