Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Baaijens F. P. T. , S. H. A. Seelen, H. P. W. Baaijens, G. W. M. Peters, and H. E. H. Meijer, “Viscoelastic flow past a confined cylinder of a low density polyethylene melt,” J. Non-Newtonian Fluid Mech. 68, 173203 (1997).
2.Bent J. , L. R. Hutchings, R. W. Richards, T. Gough, R. Spares, P. D. Coates, I. Grillo, O. G. Harlen, D. J. Read, R. S. Graham, A. E. Likhtman, D. J. Groves, T. M. Nicholson, and T. C. B. McLeish, “Neutron-mapping polymer flow: Scattering, flow visualization, and molecular theory,” Science 301, 16911695 (2003).
3.Bishko G. B. , O. G. Harlen, T. M. Nicholson, and T. C. B. McLeish, “Numerical simulation of the transient flow of branched polymer melts through a planar contraction using the ‘pom-pom’ Model,” J. Non-Newtonian Fluid Mech. 82, 255273 (1999).
4.Doi, M. , and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, UK, 1986).
5.Graham, R. S. , A. E. Likhtman, S. T. Milner, and T. C. B. McLeish, “Microscopic theory of linear entangled polymer chains under rapid deformation including chain stretch and convective constraint release,” J. Rheol. 47, 11711200 (2003).
6.Ianniruberto, G. , and G. Marrucci, “A simple constitutive equation for entangled polymers with chain stretch,” J. Rheol. 45, 13051318 (2001).
7.Janeschitz-Kriegl, H. , Polymer Melt Rheology and Flow Birefringence (Springer, New York, 1983).
8.Larson, R. G. , T. Sridhar, L. G. Leal, G. H. McKinley, A. E. Likhtman, and T. C. B. McLeish, “Definitions of entanglement spacing and time constants in the tube model,” J. Rheol. 47, 809818 (2003).
9.Laso, M. , and H. C. Öttinger, “Calculation of viscoelastic flow using molecular models: The CONFFESSIT approach,” J. Non-Newtonian Fluid Mech. 47, 120 (1993).
10.Lee, C. S. , B. C. Tripp, and J. J. Magda, “Does N1 or N2 control the onset of edge fracture?J. Rheol. 31, 306308 (1992).
11.Lee, K. , and M. R. Mackley, “The application of the multipass rheometer for precise rheooptic characterisation of polyethylene melts,” Chem. Eng. Sci. 56, 56535661 (2001).
12.Lee, K. , M. R. Mackley, T. C. B. McLeish, T. M. Nicholson, and O. G. Harlen, “Experimental observation and numerical simulation of transient stress fangs within flowin molten polyethylene,” J. Rheol. 45, 12611277 (2001).
13.Likhtman, A. E. , and T. C. B. McLeish, “Quantitative theory for linear dynamics of linear entangled polymers,” Macromolecules 35, 63326343 (2002).
14.Likhtman, A. E. , and R. S. Graham, “Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation,” J. Non-Newtonian Fluid Mech. 114, 112 (2003).
15.Mackley, M. R. , Marshall, R. T. J. , and Smeulders, J. B. A. F. , “The multipass rheometer,” J. Rheol. 39, 12931309 (1995).
16.McLeish, T. C. B. , “Tube theory of entangled polymer dynamics,” Adv. Phys. 51, 13791527 (2002).
17.McLeish, T. C. B. , and S. T. Milner, “Entangled dynamics and melt flow of branched polymers,” Adv. Polym. Sci. 143, 195256 (1999).
18.Mead, D. W. , R. G. Larson, and M. Doi, “A molecular theory of fast flows of linear polymers,” Macromolecules 31, 78957914 (1998).
19.Meissner J. , and J Hostettler, “A new elongational rheometer for polymer melts and other highly viscoelastic liquids,” Rheol. Acta 33, 121 (1994).
20.Milner, S. T. , T. C. B. McLeish, and A. E. Likhtman, “Microscopic theory of convective constraint release,” J. Rheol. 45, 539563 (2001).
21.Morton, M. , and Fetters, L. J. , “Anionic polymerization of vinyl monomers,” Rubber Chem. Technol. 48, 359409 (1975).
22.Pangborn, A. B. , M. A. Giardello, R. H. Grubbs, R. K. Rosen, and F. J. Timmers, “Safe and convenient procedure for solvent purification,” Organometallics 15, 15181520 (1996).
24.Peters, E. A. J. F. , A. P. G. van Heel, M. A. Hulsen, and B. H. A. A. van den Brule, “Generalization of the deformation field method to simulate advanced reptation models in complex flow,” J. Rheol. 44, 811829 (2000).
25.Rajagopalan, D. , R. C. Armstrong, and R. A. Brown, “Comparison of computational efficiency of flow simulations with multimode constitutive equations: Integral and differential models,” J. Non-Newtonian Fluid Mech. 46, 243273 (1993).
26.Schulze, J. S. , T. P. Lodge, C. W. Macosko, J. Hepperle, H. Munstedt, H. Bastian, D. Ferri, D. J. Groves, Y. H. Kim, M. Lyon, T. Schweizer, T. Virkler, E. Wassner, and W. Zoetelief, “A comparison of extensional viscosity measurements from various RME rheometers,” Rheol. Acta 40, 457466 (2001).
27.Tanner R. I. , and M. Keentok, “Shear fracture in cone-plate rheometry,” J. Rheol. 27, 4757 (1983).
28.Verbeeten, W. , G. W. M. Peters, and F. P. T. Baaijens, “The extended pom-pom model,” J. Rheol. 45, 823843 (2001).
29.Wischnewski A. , M. Monkenbusch, L. Willner, D. Richter, A. E. Likhtman, T. C. B. McLeish, and B. Farago, “Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts,” Phys. Rev. Lett. 88, 058301 (2002).

Data & Media loading...


Article metrics loading...



We explore both the rheology and complex flow behavior of monodisperse polymer melts. Adequate quantities of monodisperse polymer were synthesized in order that both the materials rheology and microprocessing behavior could be established. In parallel, we employ a molecular theory for the polymer rheology that is suitable for comparison with experimental rheometric data and numerical simulation for microprocessing flows. The model is capable of matching both shearand extensional data with minimal parameter fitting. Experimental data for the processing behavior of monodisperse polymers are presented for the first time as flow birefringence and pressure difference data obtained using a Multipass Rheometer with an 11:1 constriction entry and exit flow. Matching of experimental processing data was obtained using the constitutive equation with the Lagrangian numerical solver, FLOWSOLVE. The results show the direct coupling between molecular constitutive response and macroscopic processing behavior, and differentiate flow effects that arise separately from orientation and stretch.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd