Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Amarouchene, Y. , D. Bonn, J. Meunier, and H. Kellay, “Inhibition of the finite-time singularity during droplet fission of a polymeric fluid,” Phys. Rev. Lett.0031-9007 86, 35583561 (2001).
2.Amelar, S. , C. E. Eastman, T. P. Lodge, and E. D. Vonmeerwall, “How good is the bead-spring model,” J. Non-Cryst. Solids0022-3093 131, 551555 (1991).
3.Anna, S. L. , and G. H. McKinley, “Elasto-capillary thinning and breakup of model elastic liquids,” J. Rheol.0148-6055 45, 115138 (2001).
4.Anna, S. L. , G. H. McKinley, D. A. Nguyen, T. Sridhar, S. J. Muller, J. Huang, and D. F. James, “An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids,” J. Rheol.0148-6055 45, 83114 (2001).
5.Bazilevskii, A. V. , V. M. Entov, M. M. Lerner, and A. N. Rozhkov, “Degradation of polymer solution filaments,” Vysokomol. Soedin., Ser. A Ser. B1023-3091 39, 474482 (1997).
6.Bazilevskii, A. V. , V. M. Entov, and A. N. Rozhkov, “Liquid filament microrheometer and some of its applications,” Third European Rheology Conference 1990.
7.Bazilevskii, A. V. , V. M. Entov, and A. N. Rozhkov, “Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions,” Vysokomol. Soedin., Ser. A Ser. B1023-3091 43, 716726 (2001).
8.Bird, R. B. , O. Hassager, R. C. Armstrong, and C. F. Curtiss, Dynamics of Polymeric Liquids—Kinetic Theory (Wiley, New York, 1987), Vol. 2.
9.Christanti, Y. , and L. M. Walker, “Surface tension driven jet break up of strain-hardening polymer solutions,” J. Non-Newtonian Fluid Mech.0377-0257 100, 926 (2001).
10.Clasen, C. , J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, “The beads-on-string structure of viscoelastic threads,” J. Fluid Mech.0022-1120 556, 283308 (2006).
11.Cooper-White, J. J. , J. E. Fagan, V. Tirtaatmadja, D. R. Lester, and D. V. Boger, “Drop formation dynamics of constant low-viscosity, elastic fluids,” J. Non-Newtonian Fluid Mech.0377-0257 106, 2959 (2002).
12.Doyle, P. S. , E. S. G. Shaqfeh, and A. P. Gast, “Dynamic simulation of freely draining flexible polymers in steady linear flows,” J. Fluid Mech.0022-1120 334, 251291 (1997).
13.Dunlap, P. N. , and L. G. Leal, “Dilute polystyrene solutions in extensional flows—Birefringence and flow modification,” J. Non-Newtonian Fluid Mech.0377-0257 23, 548 (1987).
14.Eggers, J. , “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys.0034-6861 69, 865929 (1997).
15.Entov, V. M. , and E. J. Hinch, “Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid,” J. Non-Newtonian Fluid Mech.0377-0257 72, 3153 (1997).
16.Entov, V. M. , V. I. Kordonskil, and I. V. Prokhorov, “Rapid stretching of polymer solutions,” Sov. Phys. Dokl.0038-5689 33, 628630 (1988).
17.Ferry, J. D. , Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
18.Ghosh, I. , G. H. McKinley, R. A. Brown, and R. C. Armstrong, “Deficiencies of FENE dumbbell models in describing the rapid stretching of dilute polymer solutions,” J. Rheol.0148-6055 45, 721758 (2001).
19.Graessley, W. W. , “Polymer chain dimensions and the dependence of viscoelasic properties on the concentration, molecular weight and solvent power,” Polymer0032-3861 21, 258262 (1980).
20.Gupta, R. K. , D. A. Nguyen, and T. Sridhar, “Extensional viscosity of dilute polystyrene solutions: Effect of concentration and molecular weight,” Phys. Fluids1070-6631 12, 12961318 (2000).
21.Harrison, G. M. , J. Remmelgas, and L. G. Leal, “The dynamics of ultradilute polymer solutions in transient flow: Comparison of dumbbell-based theory and experiment,” J. Rheol.0148-6055 42, 10391058 (1998).
22.Kalashnikov, V. N. , “Shear-rate dependent viscosity of dilute polymer-solutions,” J. Rheol.0148-6055 38, 13851403 (1994).
23.Kolte, M. I. , and P. Szabo, “Capillary thinning of polymeric filaments,” J. Rheol.0148-6055 43, 609625 (1999).
24.Kulicke, W.-M. , and C. Clasen, Viscosimetry of Polymers and Polyelectrolytes (Springer, Heidelberg, 2004).
25.Larson, R. G. , “The rheology of dilute solutions of flexible polymers: Progress and problems,” J. Rheol.0148-6055 49, 170 (2005).
26.Liang, R. F. , and M. R. Mackley, “Rheological characterization of the time and strain dependence for polyisobutylene solutions,” J. Non-Newtonian Fluid Mech.0377-0257 52, 387405 (1994).
27.Lindner, A. , J. Vermant, and D. Bonn, “How to obtain the elongational viscosity of dilute polymer solutions?” Physica A0378-4371 319, 125133 (2003).
28.Mackay, M. E. , and D. V. Boger, “An explanation of the rheological properties of Boger fluids,” J. Non-Newtonian Fluid Mech.0377-0257 22, 235243 (1987).
29.Matta, J. E. , and R. P. Tytus, “Liquid stretching using a falling cylinder,” J. Non-Newtonian Fluid Mech.0377-0257 35, 215229 (1990).
30.McKinley, G. H. , “Visco-elasto-capillary thinning and breakup of complex fluids,” in: Annual Rheology Reviews, edited by D. M. Binding and K. Walters (British Society of Rheology, Aberystwyth, 2005), pp. 148.
31.McKinley, G. H. , and T. Sridhar, “Filament-stretching rheometry of complex fluids,” Annu. Rev. Fluid Mech.0066-4189 34, 375415 (2002).
32.McKinley, G. H. , and A. Tripathi, “How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer,” J. Rheol.0148-6055 44, 653670 (2000).
33.Nguyen, T. Q. , and H. H. Kausch, Flexible Polymer Chains in Elongational Flow: Theory & Experiment (Springer-Verlag, Berlin, 1999).
34.Öttinger, H. C. , Stochastic Processes in Polymeric Liquids (Springer Verlag, Berlin, 1996).
35.Papageorgiou, D. T. , “On the breakup of viscous liquid threads,” Phys. Fluids1070-6631 7, 15291544 (1995).
36.Plog, J. P. , W. M. Kulicke, and C. Clasen, “Influence of the molar mass distribution on the elongational behaviour of polymer solutions in capillary breakup,” Appl. Rheol.1430-6395 15, 2837 (2005).
37.Prabhakar, R. , J. R. Prakash, and T. Sridhar, “Effect of configuration-dependent intramolecular hydrodynamic interaction on elasto-capillary thinning and break-up filaments of dilute polymer solutions,” J. Rheol.0148-6055 (to be published).
38.Rodd, L. , T. Scott, J. Cooper-White, and G. H. McKinely, “Cappillary break-up rheometry of low-viscosity elastic fluids,” Appl. Rheol.1430-6395 15, 1227 (2005).
39.Rubinstein, M. , and R. H. Colby, Polymer Physics, (Oxford University Press, New York, 2003).
40.Schroeder, C. M. , H. P. Babcock, E. S. G. Shaqfeh, and S. Chu, “Observation of polymer conformation hysteresis in extensional flow,” Science0036-8075 301, 15151519 (2003).
41.Slobozhanin, L. A. , and J. M. Perales, “Stability of liquid bridges between equal disks in an axial gravity-field,” Phys. Fluids A0899-8213 5, 13051314 (1993).
42.Solomon, M. J. , and S. J. Muller, “Study of mixed solvent quality in a polystyrene dioctyl phthalate polystyrene system,” J. Polym. Sci., Part B: Polym. Phys.0887-6266 34, 181192 (1996).<181::AID-POLB16>3.3.CO;2-A
43.Sridhar, T. , V. Tirtaatmadja, D. A. Nguyen, and R. K. Gupta, “Measurement of extensional viscosity of polymer solutions,” J. Non-Newtonian Fluid Mech.0377-0257 40, 271280 (1991).
44.Stelter, M. , and G. Brenn, “Validation and application of a novel elongational device for polymer solutions,” J. Rheol.0148-6055 44, 595616 (2000).
45.Stelter, M. , G. Brenn, A. L. Yarin, R. P. Singh, and F. Durst, “Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer,” J. Rheol.0148-6055 46, 507527 (2002).
46.Stoltz, C. , J. J. dePablo, and M. D. Graham, “Concentration dependence of shear and extensional rheology of polymer solutions: Brownian dynamics simulations,” J. Rheol.0148-6055 50, 137167 (2006).
47.Tam, K. C. , and C. Tiu, “Improved correlation for shear-dependent viscosity of polyelectrolyte solutions,” J. Non-Newtonian Fluid Mech.0377-0257 46, 275288 (1993).
48.Tirtaatmadja, V. , G. H. McKinley, and J. J. Cooper-White, “Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration,” Phys. Fluids1070-6631 18, 043101 (2006).
49.Yao, M. W. , S. H. Spiegelberg, and G. H. McKinley, “Dynamics of weakly strain-hardening fluids in filament stretching devices,” J. Non-Newtonian Fluid Mech.0377-0257 89, 143 (2000).

Data & Media loading...


Article metrics loading...



We investigate the concentration dependence of the characteristic relaxation time of dilute polymer solutions in transient uniaxial elongational flow. A series of monodisperse polystyrene solutions of five different molecular weights with concentrations spanning five orders of magnitude were dissolved in two solvents of differing solvent quality (diethylphthalate and oligomeric styrene). Optical measurements with a capillary breakup extensional rheometer of the rate of filament thinning and the time to breakup in each fluid are used to determine the characteristic relaxation time. A criterion for a lower sensitivity limit is introduced, in the form of a minimum concentration necessary for experimental resolution of the effects of polymeric viscoelasticity. This criterion is validated by experiment and comparison to numerical calculations with a multimode bead-spring dumbbell model. These calculations also rationalize previous paradoxical observations of extensional thinning in fluid threads of ultradilute polymer solutions in which stress relaxation apparently occurred faster than predicted by the Zimm theory. Above this minimum sensitivity limit we show that the effective relaxation time of moderately dilute solutions in transient extensional flow rises substantially above the fitted value of the relaxation time extracted from small amplitude oscillatory shear flow and above the Zimm relaxation time computed from kinetic theory and intrinsic viscosity measurements. This effective relaxation time exhibits a power-law scaling with the reduced concentration and the magnitude of the exponent varies with the thermodynamic quality of the solvent. The scaling of this “self-concentration” effect appears to be roughly consistent to that predicted when the dynamics of the partially elongated and overlapping polymer chains are described within the framework of blob theories for semi-dilute solutions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd