1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A mode coupling theory for Brownian particles in homogeneous steady shear flow
Rent:
Rent this article for
Access full text Article
/content/sor/journal/jor2/53/4/10.1122/1.3119084
1.
1.Ballesta, P. , R. Besseling, L. Isa, G. Petekidis, and W. C. K. Poon, “Slip and flow of hard-sphere colloidal glasses,” Phys. Rev. Lett. 101, 258301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.258301
2.
2.Balucani, U. , and M. Zoppi, Dynamics of the Liquid State (Oxford University Press, Oxford, 1994).
3.
3.Bartsch, E. , T. Eckert, C. Pies, and H. Sillescu, “The effect of free polymer on the glass transition dynamics of microgel colloids,” J. Non-Cryst. Solids 307–310, 802811 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)01523-5
4.
4.Baxter, R. J. , “Direct correlation derivatives with respect to particle density,” J. Chem. Phys. 41, 553558 (1964).
http://dx.doi.org/10.1063/1.1725907
5.
5.Beck, C. , W. Härtl, and R. Hempelmann, “The glass transition of charged and hard sphere silica colloids,” J. Chem. Phys. 111, 82098213 (1999).
http://dx.doi.org/10.1063/1.480154
6.
6.Bender, J. , and N. J. Wagner, “Reversible shear thickening in monodisperse and bidisperse colloidal dispersions,” J. Rheol. 40, 899916 (1996).
http://dx.doi.org/10.1122/1.550767
7.
7.Berthier, L. , J. -L. Barrat, and J. Kurchan, “A two-time-scale, two-temperature scenario for nonlinear rheology,” Phys. Rev. E 61, 54645472 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.5464
8.
8.Berthier, L. , and J. -L. Barrat, “Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid,” J. Chem. Phys. 116, 62286242 (2002).
http://dx.doi.org/10.1063/1.1460862
9.
9.Besseling, R. , E. R. Weeks, A. B. Schofield, and W. C. Poon, “Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99, 028301 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.028301
10.
10.Brader, J. M. , Th. Voigtmann, M. E. Cates, and M. Fuchs, “Dense colloidal suspensions under time-dependent shear,” Phys. Rev. Lett. 98, 058301 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.058301
11.
11.Brader, J. M. , M. E. Cates, and M. Fuchs, “First-principles constitutive equation for suspension rheology,” Phys. Rev. Lett. 101, 138301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.138301
12.
12.Brady, J. F. , “The rheological behavior of concentrated colloidal dispersions,” J. Chem. Phys. 99, 567581 (1993).
http://dx.doi.org/10.1063/1.465782
13.
13.Brady, J. F. , and J. F. Morris, “Microstructure of strongly sheared suspensions and its impact on rheology and diffusion,” J. Fluid Mech. 348, 103139 (1997).
http://dx.doi.org/10.1017/S0022112097006320
14.
14.Cates, M. E. , C. B. Holmes, M. Fuchs, and O. Henrich, “Schematic mode coupling theories for shear thinning, shear thickening, and jamming,” in Unifying Concepts in Granular Media and Glasses, edited by A. Coniglio, A. Fierro, H. Herrmann, and M. Nicodemi (Elsevier, Amsterdam, 2004), pp. 203216.
15.
15.Cates, M. E. , and S. M. Fielding, “Rheology of giant micelles,” Adv. Phys. 55, 799879 (2006).
http://dx.doi.org/10.1080/00018730601082029
16.
16.Cates, M. E. , M. D. Haw, and C. B. Holmes, “Dilatancy, jamming and the physics of granulation,” J. Phys.: Condens. Matter 17, S2517S2532 (2005).
http://dx.doi.org/10.1088/0953-8984/17/24/010
17.
17.Chong, S. -H. , and B. Kim, e-print arXiv:0811.2120.
18.
18.Cichocki, B. , and W. Hess, “On the memory function for the dynamic structure factor of interacting Brownian particles,” Physica A 141, 475488 (1987).
http://dx.doi.org/10.1016/0378-4371(87)90176-2
19.
19.Crassous, J. J. , M. Siebenbürger, M. Ballauff, M. Drechsler, O. Henrich, and M. Fuchs, “Thermosensitive core-shell particles as model systems for studying the flow behavior of concentrated colloidal dispersions,” J. Chem. Phys. 125, 204906 (2006).
http://dx.doi.org/10.1063/1.2374886
20.
20.Crassous, J. J. , M. Siebenbürger, M. Ballauff, M. Drechsler, D. Hajnal, O. Henrich, and M. Fuchs, “Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow,” J. Chem. Phys. 128, 204902 (2008).
http://dx.doi.org/10.1063/1.2921801
21.
21.Crooks, G. , and D. Chandler, “Gaussian statistics of the hard-sphere fluid,” Phys. Rev. E 56, 42174221 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.4217
22.
22.Dhont, J. K. G. , An Introduction to Dynamics of Colloids (Elsevier Science, Amsterdam, 1996).
23.
23.Eckert, T. , and E. Bartsch, “The effect of free polymer on the interactions and the glass transition dynamics of microgel colloids,” Faraday Discuss. 123, 5164 (2003).
http://dx.doi.org/10.1039/b204468d
24.
24.Fielding, S. , P. Sollich, and M. E. Cates, “Aging and rheology in soft materials,” J. Rheol. 44, 323369 (2000).
http://dx.doi.org/10.1122/1.551088
25.
25.Forster, D. , Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, MA, 1975).
26.
26.Franosch, T. , M. Fuchs, W. Götze, M. R. Mayr, and A. P. Singh, “Asymptotic laws and preasymptotic correction formulas for the relaxation near glass-transition singularities,” Phys. Rev. E 55, 71537176 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.7153
27.
27.Fredrickson, G. H. , and R. G. Larson, “Viscoelasticity of homogeneous polymer melts near a critical point,” J. Chem. Phys. 86, 15531560 (1987).
http://dx.doi.org/10.1063/1.452194
28.
28.Fuchs, M. , W. Götze, I. Hofacker, and A. Latz, “Comments on the -peak shapes for relaxation in supercooled liquids,” J. Phys.: Condens. Matter 3, 50475071 (1991).
http://dx.doi.org/10.1088/0953-8984/3/26/022
29.
29.Fuchs, M. , and M. E. Cates, “Theory of nonlinear rheology and yielding of dense colloidal suspensions,” Phys. Rev. Lett. 89, 248304 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.248304
30.
30.Fuchs, M. , and M. E. Cates, “Schematic models for dynamic yielding of sheared colloidal glasses,” Faraday Discuss. 123, 267286 (2003a).
http://dx.doi.org/10.1039/b205629a
31.
31.Fuchs, M. , and M. E. Cates, “Non-Newtonian viscosity of interacting Brownian particles: A comparison of theory and data,” J. Phys.: Condens. Matter 15, S401S406 (2003b).
http://dx.doi.org/10.1088/0953-8984/15/1/355
32.
32.Fuchs, M. , and M. Ballauff, “Flow curves of dense colloidal dispersions: Schematic model analysis of the shear-dependent viscosity near the colloidal glass transition,” J. Chem. Phys. 122, 094707 (2005).
http://dx.doi.org/10.1063/1.1859285
33.
33.Fuchs, M. , and M. E. Cates, “Integration through transients for Brownian particles under steady shear,” J. Phys.: Condens. Matter 17, S1681S1696 (2005).
http://dx.doi.org/10.1088/0953-8984/17/20/003
34.
34.Ganapathy, R. , and A. K. Sood, “Intermittency route to rheochaos in wormlike micelles with flow-concentration coupling,” Phys. Rev. Lett. 96, 108301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.108301
35.
35.Götze, W. , “Some aspects of phase transitions described by the self consistent current relaxation theory,” Z. Phys. B: Condens. Matter 56, 139154 (1984).
http://dx.doi.org/10.1007/BF01469695
36.
36.Götze, W. , and L. Sjögren, “The glass transition singularity,” Z. Phys. B: Condens. Matter 65, 415427 (1987).
http://dx.doi.org/10.1007/BF01303763
37.
37.Götze, W. , and A. Latz, “Generalised constitutive equations for glassy systems,” J. Phys.: Condens. Matter 1, 41694182 (1989).
http://dx.doi.org/10.1088/0953-8984/1/26/013
38.
38.Götze, W. , “Aspects of structural glass transitions,” in Liquids, Freezing and Glass Transition, Les Houches Summer Schools of Theoretical Physics, 1989, edited byJ. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1991), pp. 287503.
39.
39.Götze, W. , and L. Sjögren, “Relaxation processes in supercooled liquids,” Rep. Prog. Phys. 55, 241376 (1992).
http://dx.doi.org/10.1088/0034-4885/55/3/001
40.
40.Götze, W. , “Recent tests of the mode-coupling theory for glassy dynamics,” J. Phys.: Condens. Matter 11, A1A45 (1999).
http://dx.doi.org/10.1088/0953-8984/11/10A/002
41.
41.Hajnal, D. , and M. Fuchs, “Flow curves of colloidal dispersions close to the glass transition: Asymptotic scaling laws in a schematic model of mode coupling theory,” Eur. Phys. J. E 28, 125138 (2009).
http://dx.doi.org/10.1140/epje/i2008-10361-0
42.
42.Hébraud, P. , F. Lequeux, J. Munch, and D. Pine, “Yielding and rearrangements in disordered emulsions,” Phys. Rev. Lett. 78, 46574660 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4657
43.
43.Henrich, O. , F. Varnik, and M. Fuchs, “Dynamical yield stresses of glasses: asymptotic formulae,” J. Phys.: Condens. Matter 17, S3625S3630 (2005).
http://dx.doi.org/10.1088/0953-8984/17/45/057
44.
44.Henrich, O. , O. Pfeifroth, and M. Fuchs, “Nonequilibrium structure of concentrated colloidal fluids under steady shear: Leading order response,” J. Phys.: Condens. Matter 19, 205132 (2007).
http://dx.doi.org/10.1088/0953-8984/19/20/205132
45.
45.Henrich, O. , “Nonlinear rheology of colloidal suspensions,” Ph.D. thesis, Universität Konstanz, 2007.
46.
46.Holmes, C. B. , M. Fuchs, and M. E. Cates, “Jamming transitions in a schematic model of suspension rheology,” Europhys. Lett. 63, 240246 (2003).
http://dx.doi.org/10.1209/epl/i2003-00465-1
47.
47.Holmes, C. B. , P. Sollich, M. Fuchs, and M. E. Cates, “Glass transitions and shear thickening suspension rheology,” J. Rheol. 49, 237269 (2005).
http://dx.doi.org/10.1122/1.1814114
48.
48.Indrani, A. V. , and S. Ramaswamy, “Shear-induced enhancement of self-diffusion in interacting colloidal suspensions,” Phys. Rev. E 52, 64926496 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.6492
49.
49.Kawasaki, K. , “Kinetic equations and time correlation functions of critical fluctuations,” Ann. Phys. (N.Y.) 61, 156 (1970).
http://dx.doi.org/10.1016/0003-4916(70)90375-1
50.
50.Kawasaki, K. , and J. D. Gunton, “Theory of nonlinear transport processes: Nonlinear shear viscosity and normal stress effects,” Phys. Rev. A 8, 20482064 (1973).
http://dx.doi.org/10.1103/PhysRevA.8.2048
51.
51.Kawasaki, K. , “Irreducible memory function for dissipative stochastic systems with detailed balance,” Physica A 215, 6174 (1995).
http://dx.doi.org/10.1016/0378-4371(95)00012-V
52.
52.Kobelev, V. , and K. S. Schweizer, “Strain softening, yielding, and shear thinning in glassy colloidal suspensions,” Phys. Rev. E 71, 021401 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.021401
53.
53.Krüger, M. , and M. Fuchs, “Fluctuation dissipation relations in stationary states of interacting Brownian particles under shear,” Phys. Rev. Lett. 102, 135701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.135701
54.
54.Latz, A. , e-print arXiv:cond-mat/0106086.
55.
55.Laun, H. M. , R. Bung, S. Hess, W. Loose, O. Hess, K. Hahn, E. Hädicke, R. Hingmann, F. Schmidt, and P. Lindner, “Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow,” J. Rheol. 36, 743787 (1992).
http://dx.doi.org/10.1122/1.550314
56.
56.Mason, T. G. , and D. A. Weitz, “Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition,” Phys. Rev. Lett. 75, 27702773 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.2770
57.
57.Messiah, A. , Quantum Mechanics (Dover, New York, 1999).
58.
58.Miyazaki, K. , and D. R. ReichmanMolecular hydrodynamic theory of supercooled liquids and colloidal suspensions under shear,” Phys. Rev. E 66, 050501 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.050501
59.
59.Miyazaki, K. , D. R. Reichman, and R. Yamamoto, “Supercooled liquids under shear: theory and simulation,” Phys. Rev. E 70, 011501 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.011501
60.
60.Miyazaki, K. , H. M. Wyss, D. A. Weitz, and D. R. Reichman, “Nonlinear viscoelasticity of metastable complex fluids,” Europhys. Lett. 75, 915921 (2006).
http://dx.doi.org/10.1209/epl/i2006-10203-9
61.
61.Morriss, G. P. , and D. J. Evans, “Application of transient correlation functions to shear flow far from equilibrium,” Phys. Rev. A 35, 792797 (1987).
http://dx.doi.org/10.1103/PhysRevA.35.792
62.
62.Petekidis, G. , A. Moussaïd, and P. Pusey, “Rearrangements in hard-sphere glasses under oscillatory shear strain,” Phys. Rev. E 66, 051402 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.051402
63.
63.Petekidis, G. , D. Vlassopoulos, and P. Pusey, “Yielding and flow of colloidal glasses,” Faraday Discuss. 123, 287302 (2003).
http://dx.doi.org/10.1039/b207343a
64.
64.Petekidis, G. , D. Vlassopoulos, and P. N. Pusey, “Yielding and flow of sheared colloidal glasses,” J. Phys.: Condens. Matter 16, S3955S3963 (2004).
http://dx.doi.org/10.1088/0953-8984/16/38/013
65.
65.Pham, K. N. , G. Petekidis, D. Vlassopoulos, S. U. Egelhaaf, P. N. Pusey, and W. C. K. Poon, “Yielding of colloidal glasses,” Europhys. Lett. 75, 624630 (2006).
http://dx.doi.org/10.1209/epl/i2006-10156-y
66.
66.Pham, K. N. , G. Petekidis, D. Vlassopoulos, S. U. Egelhaaf, W. C. K. Poon, and P. N. Pusey, “Yielding behavior of repulsion- and attraction-dominated colloidal glasses,” J. Rheol. 52, 649676 (2008).
http://dx.doi.org/10.1122/1.2838255
67.
67.Purnomo, E. H. , D. van den Ende, J. Mellema, and F. Mugele, “Linear viscoelastic properties of aging suspensions,” Europhys. Lett. 76, 7480 (2006).
http://dx.doi.org/10.1209/epl/i2006-10234-2
68.
68.Pusey, P. N. , “Intensity fluctuation spectroscopy of charged Brownian particles—coherent scattering function,” J. Phys. A 11, 119135 (1978).
http://dx.doi.org/10.1088/0305-4470/11/1/014
69.
69.Pusey, P. N. , “Colloidal suspensions,” in Liquids, Freezing and Glass Transition, Les Houches Summer Schools of Theoretical Physics, 1989, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1991), pp. 765942.
70.
70.Pusey, P. N. , and W. van Megen, “Observation of a glass transition in suspensions of spherical colloidal particles,” Phys. Rev. Lett. 59, 20832086 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2083
71.
71.Risken, H. , The Fokker–Planck Equation (Springer, Berlin, 1989).
72.
72.Russel, W. B. , D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, New York, 1989).
73.
73.Saltzman, E. J. , G. Yatsenko, and K. S. Schweizer, “Anomalous diffusion, structural relaxation and shear thinning in glassy hard sphere fluids,” J. Phys.: Condens. Matter 20, 244129 (2008).
http://dx.doi.org/10.1088/0953-8984/20/24/244129
74.
74.Sollich, P. , F. Lequeux, P. Hébraud, and M. E. Cates, “Rheology of soft glassy materials,” Phys. Rev. Lett. 78, 20202023 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2020
75.
75.Sollich, P. , “Rheological constitutive equation for a model of soft glassy materials,” Phys. Rev. E 58, 738759 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.738
76.
76.Tricomi, F. G. , Integral Equations (Interscience Publishers, New York, 1957).
77.
77.van Kampen, N. G. , Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).
78.
78.van Megen, W. , and P. N. Pusey, “Dynamic light-scattering study of the glass transition in a colloidal suspension,” Phys. Rev. A 43, 54295441 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.5429
79.
79.van Megen, W. , and S. M. Underwood, “Glass transition in colloidal hard spheres: Mode-coupling theory analysis,” Phys. Rev. Lett. 70, 27662769 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.2766
80.
80.van Megen, W. , and S. M. Underwood, “Glass transition in colloidal hard spheres: measurement and mode-coupling-theory analysis of the coherent intermediate scattering function,” Phys. Rev. E 49, 42064220 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.4206
81.
81.van Megen, W. , T. C. Mortensen, S. R. Williams, and J. Müller, “Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition,” Phys. Rev. E 58, 60736085 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.6073
82.
82.Varnik, F. , L. Bocquet, and J. L. Barrat, “A study of the static yield stress in a binary Lennard-Jones glass,” J. Chem. Phys. 120, 27882801 (2004).
http://dx.doi.org/10.1063/1.1636451
83.
83.Varnik, F. , “Structural relaxation and rheological response of a driven amorphous system,” J. Chem. Phys. 125, 164514 (2006).
http://dx.doi.org/10.1063/1.2363998
84.
84.Varnik, F. , and O. Henrich, “Yield stress discontinuity in a simple glass,” Phys. Rev. B 73, 174209 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.174209
85.
85.Weeks, E. R. , J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627631 (2000).
http://dx.doi.org/10.1126/science.287.5453.627
86.
86.Zackrisson, M. , A. Stradner, P. Schurtenberger, and J. Bergenholtz, “Structure, dynamics, and rheology of concentrated dispersions of poly(ethylene glycol)-grafted colloids,” Phys. Rev. E 73, 011408 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.011408
87.
87.Zausch, J. , J. Horbach, M. Laurati, S. Egelhaaf, J. M. Brader, Th. Voigtmann, and M. Fuchs, “From equilibrium to steady state: The transient dynamics of colloidal liquids under shear,” J. Phys.: Condens. Matter 20, 404210 (2008).
http://dx.doi.org/10.1088/0953-8984/20/40/404210
http://aip.metastore.ingenta.com/content/sor/journal/jor2/53/4/10.1122/1.3119084
Loading
/content/sor/journal/jor2/53/4/10.1122/1.3119084
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/sor/journal/jor2/53/4/10.1122/1.3119084
2009-07-01
2014-07-23

Abstract

A microscopic approach is presented for calculating general properties of interacting Brownian particles under steady shearing. We start from exact expressions for shear-dependent steady-state averages, such as correlation and structure functions, in the form of generalized Green–Kubo relations. To these we apply approximations inspired by the mode coupling theory (MCT) for the quiescent system, accessing steady-state properties by integration through the transient dynamics after startup of steady shear. Exact equations of motion, with memory effects, for the required transient density correlation functions are derived next; these can also be approximated within an MCT-like approach. This results in closed equations for the nonequilibrium stationary state of sheared dense colloidal dispersions, with the equilibrium structure factor of the unsheared system as the only input. In three dimensions, these equations currently require further approximation prior to numerical solution. However, some universal aspects can be analyzed exactly, including the discontinuous onset of a yield stress at the ideal glass transition predicted by MCT. Using these methods we additionally discuss the distorted microstructure of a sheared hard-sphere colloid near the glass transition, and consider how this relates to the shear stress. Time-dependent fluctuations around the stationary state are then approximated and compared to data from experiment and simulation; the correlators for yielding glassy states obey a “time-shear-superposition” principle. The work presented here fully develops an approach first outlined previously [Fuchs and Cates, Phys. Rev. Lett.89, 248304 (2002)], while incorporating a significant technical change from that work in the choice of mode coupling approximation used, whose advantages are discussed.

Loading

Full text loading...

/deliver/fulltext/sor/journal/jor2/53/4/1.3119084.html;jsessionid=2r1f7p9p2kb7d.x-aip-live-03?itemId=/content/sor/journal/jor2/53/4/10.1122/1.3119084&mimeType=html&fmt=ahah&containerItemId=content/sor/journal/jor2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A mode coupling theory for Brownian particles in homogeneous steady shear flow
http://aip.metastore.ingenta.com/content/sor/journal/jor2/53/4/10.1122/1.3119084
10.1122/1.3119084
SEARCH_EXPAND_ITEM