1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Observing the chain stretch transition in a highly entangled polyisoprene melt using transient extensional rheometry
Rent:
Rent this article for
USD
10.1122/1.3208073
/content/sor/journal/jor2/53/6/10.1122/1.3208073
http://aip.metastore.ingenta.com/content/sor/journal/jor2/53/6/10.1122/1.3208073

Figures

Image of FIG. 1.
FIG. 1.

Measurements of and obtained from SAOS experiment. AR-G2 (TA Instruments) . The solid lines (——) are the MM prediction for , , and . The dotted lines (- - - -) are calculated from the Maxwell spectrum (Table I), with . The dash-dotted line is .

Image of FIG. 2.
FIG. 2.

Measurements of (a) and (b) , for discrete values of the applied strain increasing from top to bottom. The dotted line is the predicted variation in from the Maxwell coefficients fitted to the SAOS measurements. AR-G2 (TA Instruments) .

Image of FIG. 3.
FIG. 3.

Development of the normalized height of the PI film in the SER extensional rheometer as function of nominal Hencky strain for four nominal elongational rates and initial aspect ratio . Dotted lines are the predicted behavior from the nominal elongational rates assuming uniaxial extension. The elongational rates found from the initial linear slope (on this semilogarithmic scale for ) are, respectively, , , , and .

Image of FIG. 4.
FIG. 4.

Normalized height of the PI film in the SER extensional rheometer as function of the nominal Hencky strain for different aspect ratios , , and at the same nominal elongational rate of . The data are taken from images obtained by high speed video microscopy. The ideal uniaxial kinematic response is shown by the dotted line. Ideal planar extension would correspond to a horizontal line. For , the deformation is seen to be a mixture of uniaxial and planar extension.

Image of FIG. 5.
FIG. 5.

Black and white image frames from the video for and from the SER instrument. The nominal elongational rate is in both experiments. Close inspection of the frames show that the kinematics depend on the aspect ratio, as shown in Fig. 4.

Image of FIG. 6.
FIG. 6.

Measurements of the engineering stress for , , and as a function of Hencky strain as determined by the EVF, SER, and FSR instruments . For the EVF and SER, is nominal Hencky strain [Eq. (8)], while for the FSR is computed from the instantaneous filament diameter. The Rouse Deborah numbers for the three experiments are , , and based on the Rouse time of . The solid line is the Doi–Edwards prediction [Eq. (3)] for , with .

Image of FIG. 7.
FIG. 7.

Transient growth of the engineering stress for elongational rates: (), (▽), (▲), (△), (◇), (○), (▼), (◻), , (◼), and (●). (EVF instrument, ). The dotted lines are the prediction of the Doi–Edwards model for the seven lowest elongational rates, and the solid line is the rapid stretching limit of the Doi–Edwards model [Eq. (3)]. The bottom frames show the development of the PI sample at different times stretched at a rate of .

Image of FIG. 8.
FIG. 8.

Transient elongational viscosity for 12 elongational rates from to . The solid line is the linear viscoelastic envelope (EVF instrument, ). Also included is the transient elongational viscosity measured during startup and stress relaxation for stretched to (◼) , (●) stretched to and (▲) stretched to a final strain . The dotted lines are the relaxation prediction during relaxation from the multimode linear Maxwell model.

Image of FIG. 9.
FIG. 9.

Comparison between the transient extensional stress for elongational experiments performed with initial aspect ratio of and , respectively (EVF instrument, ). The imposed elongational rates range from to . The solid line is the Neo-Hookean prediction , and the dotted line is the rapid stretching limit from the Doi–Edwards equation from Eq. (3).

Image of FIG. 10.
FIG. 10.

Measured values of Hencky strain at which the engineering stress goes through a maximum and Hencky strain at which the sample ruptures . Also shown is the Doi–Edwards prediction of .

Tables

Generic image for table
TABLE I.

Properties of the PI determined from small angle oscillatory shear.

Generic image for table
TABLE II.

Estimates of the maximum possible temperature increase for adiabatically elongated samples at high rates.

Loading

Article metrics loading...

/content/sor/journal/jor2/53/6/10.1122/1.3208073
2010-01-06
2014-04-23
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Observing the chain stretch transition in a highly entangled polyisoprene melt using transient extensional rheometry
http://aip.metastore.ingenta.com/content/sor/journal/jor2/53/6/10.1122/1.3208073
10.1122/1.3208073
SEARCH_EXPAND_ITEM