1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models
Rent:
Rent this article for
USD
10.1122/1.3662962
/content/sor/journal/jor2/56/1/10.1122/1.3662962
http://aip.metastore.ingenta.com/content/sor/journal/jor2/56/1/10.1122/1.3662962
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

The geometrical method of determining σ′. The stress orbit intersects the vertical line at the square points, the centre of which, marked by a circle, represents the value of σ′ at that strain.

Image of FIG. 2.
FIG. 2.

A representative stress response of the Bingham model with relevant quantities from the SD method shown.

Image of FIG. 3.
FIG. 3.

The stress response of our modified Bingham model with relevant quantities from the SD method shown.

Image of FIG. 4.
FIG. 4.

Left—Linear viscoelastic relaxation spectrum of the Giesekus model showing plateau modulus of 10 Pa and a relaxation time of 1 s. Right—Steady-shear flow curve showing predicted responses based on η 0 , η s (angled dotted lines) and the inverses of the two relaxation times λ1 and λ2 (vertical dashed lines).

Image of FIG. 5.
FIG. 5.

Representative waveforms of the Giesekus model calculated under oscillatory shear conditions of γ 0  = 178 and ω = 0.1 (left), 1 (centre), and 10 (right) rad · s−1 displayed in elastic Lissajous-Bowditch curves. Colored lines show the calculated stress response from startup, which quickly becomes the “steady-state” response. Solid black lines indicate σ′ and dashed and dotted black lines are described in the text.

Image of FIG. 6.
FIG. 6.

The differential modulus and differential viscosity (see text) measured from calculated responses of the Giesekus model to a strain amplitude of 178, some of which are shown in Fig. 5. The polymer shear modulus of 10 Pa, indicated by the horizontal dotted line, is never fully recovered in the frequency regime investigated, while the zero-rate viscosity of 10 Pa · s is achieved at low frequencies, as expected.

Image of FIG. 7.
FIG. 7.

Positive oscillatory stress (filled color symbols) superimposed on the steady-shear flow curve (unfilled squares).

Image of FIG. 8.
FIG. 8.

Three representative waveforms [in black with σ′ in blue (a–c) and σ″ in red (d–f)] of responses that are best viewed as resulting from a sequence of physical processes: (a and d) The Bingham model, (b and e) the modified Bingham model (see text) and (c and f) the Giesekus model (response to γ 0  = 178, ωλ = 1). The portions in the dotted boxes show the parts of σ′ and σ″ that conflate stresses from elastic and viscous mechanisms.

Image of FIG. 9.
FIG. 9.

LAOS data can be displayed as one-dimensional closed traces in a three-dimensional space defined by the strain (red), strain-rate (blue), and stress (black) axes. Rather than viewing these traces as fixed in time, the SPP framework suggests rotating the space from elastic (E) to viscous (V) presentations (left to right) as a function of time.

Image of FIG. 10.
FIG. 10.

The three models used in this work (a—Bingham/b—modified Bingham/c—Giesekus response to γ 0  = 178, ωλ = 1) presented in the 3D space defined by the stress, strain, and shear rate axes. Projections onto the elastic (stress–strain) and viscous (stress–rate) planes previously presented in Figs. 2, 3, and 8 are also displayed. Under the SPP framework, the best viewing of this data includes a rotation as the responses change from elastic (red lines) to viscous (blue lines).

Image of FIG. 11.
FIG. 11.

Three linear viscoelastic stress responses, characterized by δ = π/8 (top row), π/4 (middle row), and 3π/8 (bottom row) are rotated by angles −θ as displayed at the top. No area is enclosed by the curves when the angle of rotation is equal to the phase angle of the response, i.e. when θ = δ.

Image of FIG. 12.
FIG. 12.

The unsigned integral as a function of rotation angle for four normalized responses. (a) Linear response defined by sin(ωt + 3π/8), (b) the Bingham model, (c) the modified Bingham model, and (d) the Giesekus model. Vertical dashed lines indicate the angular value of δ1, the phase of the first harmonic. The insets display the projections where minimum area is enclosed.

Loading

Article metrics loading...

/content/sor/journal/jor2/56/1/10.1122/1.3662962
2011-11-29
2014-04-25
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models
http://aip.metastore.ingenta.com/content/sor/journal/jor2/56/1/10.1122/1.3662962
10.1122/1.3662962
SEARCH_EXPAND_ITEM