banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Scaling of critical velocity for bubble raft fracture under tension
Rent this article for
View: Figures


Image of FIG. 1.
FIG. 1.

Illustration of the spatial organization of a typical monodisperse and a typical polydisperse raft are shown in Figs. 1(a) and 1(c), respectively. Figures 1(b) and 1(d) are the 2D Fourier transform corresponding to Figs. 1(a) and 1(c). The Fourier transform is used to define the characteristic bubble size.

Image of FIG. 2.
FIG. 2.

Plot of the typical data of the angular averaged PSD as a function of the wavelength of the raft structure for a polydisperse raft (red dashed line) and a monodisperse raft (black line). The characteristic diameter of the bubble raft is defined as the peak position of the PSD. The characteristic bubble diameter for these systems shown here are for monodisperse bubbles, d = 0.99 mm, with a distribution in size given by the full width at half maximum of 0.05 mm and for polydisperse bubbles, d = 0.94 mm, with a distribution in size given by the full width at half maximum of 0.16 mm.

Image of FIG. 3.
FIG. 3.

Illustration of the role of T1 events in the nucleation of fracture zones. A T1 event occurs when two neighboring bubbles are pulled apart, and two next-nearest neighbors fill the gap and become nearest neighbors. This is the sequence illustrated by the top-right image labeled “No fracture.” In contrast, when the bubbles are moving faster than a critical speed associated with the time for a T1 event to occur, the next-nearest neighbors can not respond in time, and a hole is nucleated in the system. This is illustrated by the lower-right image labeled “fracture.”

Image of FIG. 4.
FIG. 4.

Typical images for pinch-off and fracture of the bubble raft. (a)–(c) are images of a polydisperse bubble raft with an characteristic bubble radius 0.33 mm. (d)–(f) are images of a monodisperse bubble raft with the characeristic bubble radius 0.33 mm. The scale bar on the top of each image corresponds to a length of 20 mm. The initial length in each case is 60 mm, and the initial width is 80 mm. Images (a) and (d) are the rectangular initial state of the rafts. Images (b) and (e) provide an example of fracture. Images (c) and (f) are examples of pinch-off. The pulling velocities are are 2.57 mm/s for (f), 3.42 mm/s for (c) and (e), and 4.29 mm/s for (b).

Image of FIG. 5.
FIG. 5.

vs L/W for different bubble sizes and structures. (a) is for polydisperse rafts and (b) is for monodisperse rafts. The symbols distinguish systems with different characteristic radii: 0.35 (solid squares), 0.47 (solid circles), and 0.68 mm (solid triangles). The initial lengths and widths ranged from 40 to 80 mm and 40 to 120 mm with 20 mm steps. For comparison with previous work, the insets are the same data but with vs W/L plotted. The scaled critical velocities for polydisperse and monodisperse rafts collapse onto their respective master curves. However, the behavior for the two systems is fundamentally different. The fitting curves (green lines in (a) and (b)) are a linear fit for polydisperse raft (as proposed), and a polynomial fit with the second order for monodisperse raft, with an apparent onset value for L/W.

Image of FIG. 6.
FIG. 6.

A direct comparison for vs W/L between polydisperse (black square) and monodisperse (red circle). For all the scaled initial widths, the critical velocity for polydisperse raft is larger than the monodisperse bubble raft.

Image of FIG. 7.
FIG. 7.

The critical velocity vs the initial bubble raft width with the different volume ratio of the glycerol: 15% glycerol (black square) and 32% glycerol (red circle). The data are for an initial L of 60 mm and a bubble radius of 0.47 mm. An increase in viscosity results in a consistently lower critical velocity for fracture.

Image of FIG. 8.
FIG. 8.

The histogram of the time for T1 events to occur in the (a) 15% and (b) 32% glycerol solutions. The T1 event time is measured by counting the time for the single T1 event in the oscillatory geometry. The histograms of 15% and 32% glycerol solution reveal an increase of the characteristic T1 time from 0.36 to 0.47 s as the viscosity is increased.

Image of FIG. 9.
FIG. 9.

Plot of versus L/W for 15% (black squares) and 32% (red circles) solutions. The initial lengths and widths ranged from 40 to 80 mm and 40 to 120 mm with 20 mm steps. The bubble radius is about 0.47 mm for both solutions. The T1 velocity is derived from the T1 time() which is measured by the oscillatory experiment.


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Scaling of critical velocity for bubble raft fracture under tension