1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Local mobility and microstructure in periodically sheared soft particle glasses and their connection to macroscopic rheology
Rent:
Rent this article for
Access full text Article
/content/sor/journal/jor2/57/3/10.1122/1.4802631
1.
1. Bonnecaze, R. , and M. Cloitre, “ Micromechanics of Soft Particle Glasses,” Adv. Polym. Sci. 236, 117161 (2010).
http://dx.doi.org/10.1007/12_2010_90
2.
2. Brady, J. F. , and J. F. Morris, “ Microstructure of strongly sheared suspensions and its impact on rheology and diffusion,” J. Fluid Mech. 348, 103139 (1997).
http://dx.doi.org/10.1017/S0022112097006320
3.
3. Buitenhuis, J. , and S. Forster, “ Block copolymer micelles: Viscoelasticity and interaction potential of soft spheres,” J. Chem. Phys. 107, 262272 (1997).
http://dx.doi.org/10.1063/1.474346
4.
4. Cho, K. S. , K. Hyun, K. H. Ahn, and S. J. Lee, “ A geometrical interpretation of large amplitude oscillatory shear response,” J. Rheol. 49, 747758 (2005).
http://dx.doi.org/10.1122/1.1895801
5.
5. Cloitre, M. , R. Borrega, F. Monti, and L. Leibler, “ Structure and flow of polyelectrolyte microgels: From suspensions to glasses,” C. R. Phys. 4, 221230 (2003).
http://dx.doi.org/10.1016/S1631-0705(03)00046-X
6.
6. Cohen-Addad, S. , H. Hussein, and R. Höhler, “ Viscoelastic response of a coarsening foam,” Phys. Rev. E 57, 68976901 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.6897
7.
7. Corté, L. , P. M. Chaikin, J. P. Gollub, and D. J. Pine, “ Random organization in periodically driven systems,” Nat. Phys. 4, 420424 (2008).
http://dx.doi.org/10.1038/nphys891
8.
8. Crassous, J. J. , M. Siebenbürger, M. Ballauff, M. Drechsler, D. Hajnal, O. Henrich, and M. Fuchs, “ Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow,” J. Chem. Phys. 128, 204902 (2008).
http://dx.doi.org/10.1063/1.2921801
9.
9. Dealy, J. M. , and K. F. Wissbrun, Melt Rheology and Its Role in Plastics Processing: Theory and Applications (Van Nostrand Reinhold, New York, 1990).
10.
10. Erwin, B. M. , M. Cloitre, M. Gauthier, and D. Vlassopoulos, “ Dynamics and rheology of colloidal star polymers,” Soft Matter 6, 28252833 (2010).
http://dx.doi.org/10.1039/b926526k
11.
11. Ewoldt, R. H. , A. E. Hosoi, and G. H. McKinley, “ New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear,” J. Rheol. 52, 14271458 (2008).
http://dx.doi.org/10.1122/1.2970095
12.
12. Ewoldt, R. H. , P. Winter, J. Maxey, and G. H. McKinley, “ Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials,” Rheol. Acta 49, 191212 (2010).
http://dx.doi.org/10.1007/s00397-009-0403-7
13.
13. Gurnon, A. K. , and N. J. Wagner, “ Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles,” J. Rheol. 56, 333351 (2012).
http://dx.doi.org/10.1122/1.3684751
14.
14. Hanley, H. J. M. , J. C. Rainwater, and S. Hess, “ Shear-induced dependence of the liquid pair correlation function,” Phys. Rev. A 36, 17951802 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.1795
15.
15. Hébraud, P. , F. Lequeux, J. P. Munch, and D. J. Pine, “ Yielding and rearrangements in disordered emulsions,” Phys. Rev. Lett. 78, 46574660 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4657
16.
16. Hyun, K. , and M. Wilhelm, “ Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems,” Macromolecules 42, 411422 (2009).
http://dx.doi.org/10.1021/ma8017266
17.
17. Hyun, K. , M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee, R. H. Ewoldt, and G. H. McKinley, “ A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS),” Prog. Polym. Sci. 36, 16971753 (2011).
http://dx.doi.org/10.1016/j.progpolymsci.2011.02.002
18.
18. Hyun, K. , S. H. Kim, K. H. Ahn, and S. J. Lee, “ Large amplitude oscillatory shear as a way to classify the complex fluids,” J. Non-Newtonian Fluid Mech. 107, 5165 (2002).
http://dx.doi.org/10.1016/S0377-0257(02)00141-6
19.
19. Klein, C. O. , H. W. Spiess, A. Calin, C. Balan, and M. Wilhem, “ Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response,” Macromolecules 40, 42504259 (2007).
http://dx.doi.org/10.1021/ma062441u
20.
20. Lacasse, M. D. , G. S. Grest, D. Levine, T. G. Mason, and D. A. Weitz, “ Model for the elasticity of compressed emulsions,” Phys. Rev. Lett. 76, 34483451 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3448
21.
21. Larson, R. G. , The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).
22.
22. Likos, C. N. , “ Soft matter with soft particles,” Soft Matter 2, 478498 (2006).
http://dx.doi.org/10.1039/b601916c
23.
23. Liu, A. J. , S. Ramaswamy, T. G. Mason, H. Gang, and D. A. Weitz, “ Anomalous viscous loss in emulsions and foams,” Phys. Rev. Lett. 76, 30173020 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3017
24.
24. Liu, K. K. , Williams, D. R. , and Briscoe, B. J. , “ The large deformation of a single micro-elastomeric sphere,” J. Phys. D: Appl. Phys. 31, 294303 (1998).
http://dx.doi.org/10.1088/0022-3727/31/3/008
25.
25. López-Barrón, C. R. , L. Porcar, A. P. R. Eberle, and N. J. Wagner, “ Dynamics of melting and recrystallization in a polymeric micellar crystal subjected to large amplitude oscillatory shear flow,” Phys. Rev. Lett. 108, 258301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.258301
26.
26. Lubachevsky, B. D. , and F. H. Stillinger, “ Geometric-properties of random disk packings,” J. Stat. Phys. 60, 561583 (1990).
http://dx.doi.org/10.1007/BF01025983
27.
27. Mason, T. G. , J. Bibette, and D. A. Weitz, “ Elasticity of compressed emulsions,” Phys. Rev. Lett. 75, 20512054 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.2051
28.
28. Miyazaki, K. , H. Wyss, D. A. Weitz, and D. Reichman, “ Nonlinear viscoelasticity of metastable complex fluids,” Europhys. Lett. 75, 915921 (2006).
http://dx.doi.org/10.1209/epl/i2006-10203-9
29.
29. Morris, J. F. , and B. Katyal, “ Microstructure from simulated Brownian suspension flows at large shear rate,” Phys. Fluids 14, 19201937 (2002).
http://dx.doi.org/10.1063/1.1476745
30.
30. Nott, P. R. , and J. F. Brady, “ Pressure-driven flow of suspensions: simulation and theory,” J. Fluid Mech. 275, 157199 (1994).
http://dx.doi.org/10.1017/S0022112094002326
31.
31. Pearson, D. S. , and W. E. Rochefort, “ Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields,” J. Polym. Sci., Polym. Phys. Ed. 20, 8398 (1982).
http://dx.doi.org/10.1002/pol.1982.180200107
32.
32. Philippoff, W. , “ Vibrational measurements with large amplitudes,” Trans. Soc. Rheol. 10, 317334 (1966).
http://dx.doi.org/10.1122/1.549049
33.
33. Pine, D. J. , J. P. Gollub, J. F. Brady, and A. M. Leshansky, “ Chaos and threshold for irreversibility in sheared suspensions,” Nature 438, 9971000 (2005).
http://dx.doi.org/10.1038/nature04380
34.
34. Plimpton, S. , “ Fast parallel algorithms for short-range molecular-dynamics,” J. Comput. Phys. 117, 119 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
35.
35. Rogers, S. , J. Kohlbrecher, and M. P. Lettinga, “ The molecular origin of stress generation in worm-like micelles, using a rheo-SANS LAOS approach,” Soft Matter 8, 78317839 (2012).
http://dx.doi.org/10.1039/c2sm25569c
36.
36. Rogers, S. A. , “ A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2D/3D approach,” J. Rheol. 56, 11291151 (2012).
http://dx.doi.org/10.1122/1.4726083
37.
38. Rogers, S. A. , B. M. Erwin, D. Vlassopoulos, and M. Cloitre, “ A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid,” J. Rheol. 55, 435458 (2011a).
http://dx.doi.org/10.1122/1.3544591
38.
39. Rogers, S. A. , B. M. Erwin, D. Vlassopoulos, and M. Cloitre, “ Oscillatory yielding of a colloidal star glass,” J. Rheol. 55, 733752 (2011b).
http://dx.doi.org/10.1122/1.3579161
39.
37. Rogers, S. A. , and M. P. Lettinga, “ A sequence of physical processes determined and quantified in LAOS: Application to theoretical nonlinear models,” J. Rheol. 56, 125 (2012).
http://dx.doi.org/10.1122/1.3662962
40.
40. Seth, J. R. , L. Mohan, C. Locatelli-Champagne, M. Cloitre, and R. T. Bonnecaze, “ A micro mechanical model to predict the flow of soft particle glasses,” Nature Mater. 10, 838843 (2011).
http://dx.doi.org/10.1038/nmat3119
41.
41. Seth, J. R. , M. Cloitre, and R. T. Bonnecaze, “ Elastic properties of soft particle pastes,” J. Rheol. 50, 353376 (2006).
http://dx.doi.org/10.1122/1.2186982
42.
42. Sierou, A. , and J. F. Brady, “ Rheology and microstructure in concentrated noncolloidal suspensions,” J. Rheol. 46, 10311056 (2002).
http://dx.doi.org/10.1122/1.1501925
43.
43. Wagner, M. H. , V. H. Rolón-Garrido, K. Hyun, and M. Wilhelm, “ Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers,” J. Rheol. 55, 495516 (2011).
http://dx.doi.org/10.1122/1.3553031
44.
44. Wilhelm, M. , “ Fourier-transform rheology,” Macromol. Mater. Eng. 287, 83105 (2002).
http://dx.doi.org/10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
45.
45. Wilhelm, M. , D. Maring, and H.-W. Spiess, “ Fourier-transform rheology,” Rheol. Acta 37, 399405 (1998).
http://dx.doi.org/10.1007/s003970050126
http://aip.metastore.ingenta.com/content/sor/journal/jor2/57/3/10.1122/1.4802631
Loading
/content/sor/journal/jor2/57/3/10.1122/1.4802631
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/sor/journal/jor2/57/3/10.1122/1.4802631
2013-04-29
2014-12-21

Abstract

Oscillatory shear is a widely used characterization technique for complex fluids but the microstructural changes that produce the material response are not well understood. We apply a recent micromechanical model to soft particle glasses subjected to oscillatory flow. We use particle scale simulations at small, intermediate and large strain amplitudes to determine their microstructure, particle scale mobility, and macroscopic rheology. The macroscopic properties computed from simulations quantitatively agree with experimental measurements on well-characterized microgel suspensions, which validate the model. At the mesoscopic scale, the evolution of the particle pair distribution during a cycle reveals the physical mechanisms responsible for yielding and flow and also leads to quantitative prediction of shear stress. At the local scale, the particles remain trapped inside their surrounding cage below the yield strain and yielding is associated with the onset of large scale rearrangements and shear-induced diffusion. This multiscale analysis thus highlights the distinct microscopic events that make these glasses exhibit a combination of solid-like and liquid-like behavior.

Loading

Full text loading...

/deliver/fulltext/sor/journal/jor2/57/3/1.4802631.html;jsessionid=246hdqiex3btd.x-aip-live-06?itemId=/content/sor/journal/jor2/57/3/10.1122/1.4802631&mimeType=html&fmt=ahah&containerItemId=content/sor/journal/jor2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Local mobility and microstructure in periodically sheared soft particle glasses and their connection to macroscopic rheology
http://aip.metastore.ingenta.com/content/sor/journal/jor2/57/3/10.1122/1.4802631
10.1122/1.4802631
SEARCH_EXPAND_ITEM