Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/sor/journal/jor2/58/5/10.1122/1.4882021
1.
Alexander, S. , “ Amorphous solids: Their structure, lattice dynamics and elasticity,” Phys. Rep. 296, 65236 (1998).
http://dx.doi.org/10.1016/S0370-1573(97)00069-0
2.
Arevalo, R. C. , J. S. Urbach, and D. L. Blair, “ Size-dependent rheology of type-I collagen networks,” Biophys. J. 99(8), L65L67 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.08.008
3.
Barrat, J.-L. , and A. Lemaitre, “ Heterogeneities in amorphous systems under shear,” in Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, International Series of Monographs on Physics, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University, Oxford, 2011).
4.
Bergenholtz, J. , J. F. Brady, and M. Vicic, “ The non-Newtonian rheology of dilute colloidal suspensions,” J. Fluid Mech. 456, 239275 (2002).
http://dx.doi.org/10.1017/S0022112001007583
5.
Bianchi, E. , R. Blaak, and C. N. Likos, “ Patchy colloids: State of the art and perspectives,” Phys. Chem. Chem. Phys. 13, 63976410 (2011).
http://dx.doi.org/10.1039/c0cp02296a
6.
Carpineti, M. , and M. Giglio, “ Spinodal-type dynamics in fractal aggregation of colloidal clusters,” Phys. Rev. Lett. 68, 33273330 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3327
7.
Charbonneau, P. , and D. R. Reichman, “ Phase behavior and far-from-equilibrium gelation in charged attractive colloids,” Phys. Rev. E 75, 050401 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.050401
8.
Chaudhuri, P. , L. Berthier, and L. Bocquet, “ Inhomogeneous shear flows in soft jammed materials with tunable attractive forces,” Phys. Rev. E 85, 021503 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.021503
9.
Colombo, J. , A. Widmer-Cooper, and E. Del Gado, “ Microscopic picture of cooperative processes in restructuring gel networks,” Phys. Rev. Lett. 110, 198301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.198301
10.
Colombo, J. , and E. Del Gado, “ Self-assembly and cooperative dynamics of a model colloidal gel network,” Soft Matter 10, 40034015 (2014).
http://dx.doi.org/10.1039/c4sm00219a
11.
Conrad, J. , H. Wyss, V. Trappe, S. Manley, K. Miyazaki, L. Kaufman, A. Schofield, D. Reichman, and D. Weitz, “ Arrested fluid-fluid phase separation in depletion systems: Implications of the characteristic length on gel formation and rheology,” J. Rheol. 54(2), 421438 (2010).
http://dx.doi.org/10.1122/1.3314295
12.
Cordier, P. , F. Tournilhac, C. Soulie-Ziakovic, and L. Leibler, “ Self-healing and thermoreversible rubber from supramolecular assembly,” Nature 451, 977980 (2008).
http://dx.doi.org/10.1038/nature06669
13.
Del Gado, E. , and W. Kob, “ Structure and relaxation dynamics of a colloidal gel,” Europhys. Lett. 72, 10321038 (2005).
http://dx.doi.org/10.1209/epl/i2005-10342-5
14.
Del Gado, E. , and W. Kob, “ A microscopic model for colloidal gels with directional effective interactions: Network induced glassy dynamics,” Soft Matter 6(7), 15471558 (2010).
http://dx.doi.org/10.1039/b916813c
15.
Denn, M. , and D. Bonn, “ Issues in the flow of yield-stress liquids,” Rheol. Acta 50(4), 307315 (2011).
http://dx.doi.org/10.1007/s00397-010-0504-3
16.
Di Michele, L. , F. Varrato, J. Kotar, S. H. Nathan, G. Foffi, and E. Eiser, “ Multistep kinetic self-assembly of DNA-coated colloids,” Nat. Commun. 4, 2007 (2013).
http://dx.doi.org/10.1038/ncomms3007
17.
Dibble, C. J. , M. Kogan, and M. J. Solomon, “ Structural origins of dynamical heterogeneity in colloidal gels,” Phys. Rev. E 77, 050401 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.050401
18.
Dinsmore, A. D. , V. Prasad, I. Y. Wong, and D. A. Weitz, “ Microscopic structure and elasticity of weakly aggregated colloidal gels,” Phys. Rev. Lett. 96, 185502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.185502
19.
Divoux, T. , D. Tamarii, C. Barentin, and S. Manneville, “ Transient shear banding in a simple yield stress fluid,” Phys. Rev. Lett. 104, 208301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.208301
20.
Divoux, T. , D. Tamarii, C. Barentin, S. Teitel, and S. Manneville, “ Yielding dynamics of a Herschel–bulkley fluid: A critical-like fluidization behaviour,” Soft Matter 8(15), 41514164 (2012).
http://dx.doi.org/10.1039/c2sm06918k
21.
Eberle, A. P. R. , N. J. Wagner, and R. Castañeda Priego, “ Dynamical arrest transition in nanoparticle dispersions with short-range interactions,” Phys. Rev. Lett. 106, 105704 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.105704
22.
Ewoldt, R. H. , A. E. Hosoi, and G. H. McKinley, “ New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear,” J. Rheol. 52(6), 14271458 (2008).
http://dx.doi.org/10.1122/1.2970095
23.
Falk, M. L. , and J. Langer, “ Deformation and failure of amorphous, solidlike materials,” Annu. Rev. Condens. Matter Phys. 2(1), 353373 (2011).
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140452
24.
Fall, A. , J. Paredes, and D. Bonn, “ Yielding and shear banding in soft glassy materials,” Phys. Rev. Lett. 105, 225502 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.225502
25.
Fielding, S. M. , “ Shear banding in soft glassy materials,” e-print arXiv:1309.3422 [cond-mat.soft].
26.
Fielding, S. M. , and P. D. Olmsted, “ Early stage kinetics in a unified model of shear-induced demixing and mechanical shear banding instabilities,” Phys. Rev. Lett. 90, 224501 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.224501
27.
Fiocco, D. , G. Foffi, and S. Sastry, “ Oscillatory athermal quasistatic deformation of a model glass,” Phys. Rev. E 88, 020301 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.020301
28.
Foffi, G. , C. De Michele, F. Sciortino, and P. Tartaglia, “ Arrested phase separation in a short-ranged attractive colloidal system: A numerical study,” J. Chem. Phys. 122, 224903 (2005).
http://dx.doi.org/10.1063/1.1924704
29.
Gardel, M. L. , J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “ Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 13011305 (2004).
http://dx.doi.org/10.1126/science.1095087
30.
Gibaud, T. , A. Zaccone, E. Del Gado, V. Trappe, and P. Schurtenberger, “ Unexpected decoupling of stretching and bending modes in protein gels,” Phys. Rev. Lett. 110, 058303 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.058303
31.
Gibaud, T. , D. Frelat, and S. Manneville, “ Heterogeneous yielding dynamics in a colloidal gel,” Soft Matter 6(15), 34823488 (2010).
http://dx.doi.org/10.1039/c000886a
32.
Gibaud, T. , and P. Schurtenberger, “ A closer look at arrested spinodal decomposition in protein solutions,” J. Phys.: Condens. Matter 21(32), 322201 (2009).
http://dx.doi.org/10.1088/0953-8984/21/32/322201
33.
Gisler, T. , R. C. Ball, and D. A. Weitz, “ Strain hardening of fractal colloidal gels,” Phys. Rev. Lett. 82, 10641067 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1064
34.
Head, D. A. , A. J. Levine, and F. C. MacKintosh, “ Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks,” Phys. Rev. E 68, 061907 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.061907
35.
Helgeson, M. E. , Y. Gao, S. E. Moran, J. Lee, M. Godfrin, A. Tripathi, A. Bose, and P. S. Doyle, “ Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels,” Soft matter 10(17), 31223133 (2014).
http://dx.doi.org/10.1039/c3sm52951g
36.
Heussinger, C. , and E. Frey, “ Floppy modes and nonaffine deformations in random fiber networks,” Phys. Rev. Lett. 97, 105501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.105501
37.
Hyun, K. , M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee, R. H. Ewoldt, and G. H. McKinley, “ A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS),” Prog. Polym. Sci. 36(12), 16971753 (2011).
http://dx.doi.org/10.1016/j.progpolymsci.2011.02.002
38.
Janmey, P. A. , M. E. McCormick, S. Rammensee, J. L. Leight, P. C. Georges, and F. C. MacKintosh, “ Negative normal stress in semiflexible biopolymer gels,” Nature Mater. 6(1), 4851 (2007).
http://dx.doi.org/10.1038/nmat1810
39.
Karmakar, S. , E. Lerner, I. Procaccia, and J. Zylberg, “ Statistical physics of elastoplastic steady states in amorphous solids: Finite temperatures and strain rates,” Phys. Rev. E 82, 031301 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.031301
40.
Kern, N. , and D. Frenkel, “ Fluid-fluid coexistence in colloidal systems with short-ranged strongly directional attraction,” J. Chem. Phys. 118(21), 98829889 (2003).
http://dx.doi.org/10.1063/1.1569473
41.
Koumakis, N. , and G. Petekidis, “ Two step yielding in attractive colloids: Transition from gels to attractive glasses,” Soft Matter 7(6), 24562470 (2011).
http://dx.doi.org/10.1039/c0sm00957a
42.
Laurati, M. , G. Petekidis, N. Koumakis, F. Cardinaux, A. B. Schofield, J. M. Brader, M. Fuchs, and S. U. Egelhaaf, J. Chem. Phys. 130, 134907 (2009).
http://dx.doi.org/10.1063/1.3103889
43.
Laurati, M. , S. Egelhaaf, and G. Petekidis, “ Nonlinear rheology of colloidal gels with intermediate volume fraction,” J. Rheol. 55(3), 673706 (2011).
http://dx.doi.org/10.1122/1.3571554
44.
Lees, A. , and S. Edwards, “ The computer study of transport processes under extreme conditions,” J. Phys. C: Solid State Phys. 5(15), 19211929 (1972).
http://dx.doi.org/10.1088/0022-3719/5/15/006
45.
Lieleg, O. , J. Kayser, G. Brambilla, L. Cipelletti, and A. R. Bausch, “ Slow dynamics and internal stress relaxation in bundled cytoskeletal networks,” Nature Mater. 10(3), 236242 (2011).
http://dx.doi.org/10.1038/nmat2939
46.
Lieleg, O. , M. M. A. E. Claessens, C. Heussinger, E. Frey, and A. R. Bausch, “ Mechanics of bundled semiflexible polymer networks,” Phys. Rev. Lett. 99, 088102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.088102
47.
Lindstrom, S. B. , T. E. Kodger, J. Sprakel, and D. A. Weitz, “ Structures, stresses, and fluctuations in the delayed failure of colloidal gels,” Soft Matter 8, 36573664 (2012).
http://dx.doi.org/10.1039/c2sm06723d
48.
Lodge, J. F. M. , and D. M. Heyes, “ Rheology of transient colloidal gels by Brownian dynamics computer simulation,” J. Rheol. 43(1), 219244 (1999).
http://dx.doi.org/10.1122/1.550984
49.
Lu, P. J. , E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “ Gelation of particles with short-range attraction,” Nature 453, 499503 (2008).
http://dx.doi.org/10.1038/nature06931
50.
Maccarrone, S. , G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “ Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter 6(21), 55145522 (2010).
http://dx.doi.org/10.1039/c0sm00155d
51.
Maloney, C. E. , and A. Lemaître, “ Amorphous systems in athermal, quasistatic shear,” Phys. Rev. E 74(1), 016118 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.016118
52.
Martens, K. , L. Bocquet, and J.-L. Barrat, “ Connecting diffusion and dynamical heterogeneities in actively deformed amorphous systems,” Phys. Rev. Lett. 106, 156001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.156001
53.
Martin, J. D. , and Y. T. Hu, “ Transient and steady-state shear banding in aging soft glassy materials,” Soft Matter 8(26), 69406949 (2012).
http://dx.doi.org/10.1039/c2sm25299f
54.
Masschaele, K. , J. Vermant, and J. Fransaer, “ Direct visualization of yielding in model two-dimensional colloidal gels subjected to shear flow,” J. Rheol. 53, 14371460 (2009).
http://dx.doi.org/10.1122/1.3237154
55.
Milner, S. T. , “ Dynamical theory of concentration fluctuations in polymer solutions under shear,” Phys. Rev. E 48, 36743691 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.3674
56.
Mohraz, A. , and M. J. Solomon, “ Orientation and rupture of fractal colloidal gels during start-up of steady shear flow,” J. Rheol. 49(3), 657681 (2005).
http://dx.doi.org/10.1122/1.1895799
57.
Møller, P. C. F. , S. Rodts, M. A. J. Michels, and D. Bonn, “ Shear banding and yield stress in soft glassy materials,” Phys. Rev. E 77, 041507 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.041507
58.
Ohtsuka, T. , C. P. Royall, and H. Tanaka, “ Local structure and dynamics in colloidal fluids and gels,” Europhys. Lett. 84, 46002 (2008).
http://dx.doi.org/10.1209/0295-5075/84/46002
59.
Onuki, A. , “ Scattering from deformed swollen gels with heterogeneities,” J. Phys. II France 2, 4561 (1992).
http://dx.doi.org/10.1051/jp2:1992112
60.
Ovarlez, G. , S. Rodts, X. Chateau, and P. Coussot, “ Phenomenology and physical origin of shear localization and shear banding in complex fluids,” Rheol. Acta 48(8) 831844 (2009).
http://dx.doi.org/10.1007/s00397-008-0344-6
61.
Pantina, J. , and E. Furst, “ Elasticity and critical bending moment of model colloidal aggregates,” Phys. Rev. Lett. 94(13), 138301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.138301
62.
Picard, G. , A. Ajdari, F. Lequeux, and L. Bocquet, “ Slow flows of yield stress fluids: Complex spatiotemporal behavior within a simple elastoplastic model,” Phys. Rev. E 71, 010501 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.010501
63.
Plimpton, S. , “ Fast parallel algorithms for short–range molecular dynamics,” J. Comp. Phys. 117, 119 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
64.
Pouzot, M. , T. Nicolai, L. Benyahia, and D. Durand, “ Strain hardening and fracture of heat-set fractal globular protein gels,” J. Colloid Interface Sci. 293(2), 376383 (2006).
http://dx.doi.org/10.1016/j.jcis.2005.06.074
65.
Prasad, V. , V. Trappe, A. D. Dinsmore, P. N. Segre, L. Cipelletti, and D. A. Weitz, “ Rideal lecture. Universal features of the fluid to solid transition for attractive colloidal particles,” Faraday Discuss. 123, 112 (2003).
http://dx.doi.org/10.1039/b211107c
66.
Rajaram, B. , and A. Mohraz, “ Microstructural response of dilute colloidal gels to nonlinear shear deformation,” Soft Matter 6, 22462259 (2010).
http://dx.doi.org/10.1039/b926076e
67.
Rovigatti, L. , W. Kob, and F. Sciortino, “ The vibrational density of states of a disordered gel model,” J. Chem. Phys. 135, 104502 (2011).
http://dx.doi.org/10.1063/1.3626869
68.
Sacanna, S. , M. Korpics, K. Roriguez, L. Colón-Melendez, S.-Y. Kim, D. J. Pine, and G.-R. Yi, “ Shaping colloids for self-assembly,” Nat. Commun. 4, 1688 (2013).
http://dx.doi.org/10.1038/ncomms2694
69.
Santos, P. H. S. , O. H. Campanella, and M. A. Carignano, “ Effective attractive range and viscoelasticity of colloidal gels,” Soft Matter 9, 709714 (2013).
http://dx.doi.org/10.1039/c2sm26585k
70.
Saw, S. , N. Ellegaard, W. Kob, and S. Sastry, “ Structural relaxation of a gel modeled by three body interactions,” Phys. Rev. Lett. 103(24), 248305 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.248305
71.
Schall, P. , D. A. Weitz, and F. Spaepen, “ Structural rearrangements that govern flow in colloidal glasses,” Science 318(5858), 18951899 (2007).
http://dx.doi.org/10.1126/science.1149308
72.
Schall, P. , and M. van Hecke, “ Shear bands in matter with granularity,” Annu. Rev. Fluid Mech. 42(1), 6788 (2009).
http://dx.doi.org/10.1146/annurev-fluid-121108-145544
73.
Schmitt, V. , C. M. Marques, and F. m. c. Lequeux, “ Shear-induced phase separation of complex fluids: The role of flow-concentration coupling,” Phys. Rev. E 52, 40094015 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.4009
74.
Sciortino, F. , and E. Zaccarelli, “ Reversible gels of patchy particles,” Curr. Opin. Solid State Mater. Sci. 15(6), 246253 (2011).
http://dx.doi.org/10.1016/j.cossms.2011.07.003
75.
Seto, R. , R. Botet, M. Meireles, G. K. Auernhammer, and B. Cabane, “ Compressive consolidation of strongly aggregated particle gels,” J. Rheol. 57(5), 13471366 (2013).
http://dx.doi.org/10.1122/1.4817436
76.
Sottos, N. , and J. S. Moore, “ Material chemistry: Spot on healing,” Nature 472, 299300 (2011).
http://dx.doi.org/10.1038/472299a
77.
Stillinger, F. H. , and T. A. Weber, “ Packing structures and transitions in liquids and solids,” Science 225(4666), 983989 (1984).
http://dx.doi.org/10.1126/science.225.4666.983
78.
Storm, C. , J. J. Pastore, F. C. MacKintosh, T. Lubensky, and P. A. Jamney, “ Nonlinear elasticity in biological gels,” Nature 435(7039), 191194 (2005).
http://dx.doi.org/10.1038/nature03521
79.
Swan, J. W. , R. N. Zia, and J. F. Brady, “ Large amplitude oscillatory microrheology,” J. Rheol. 58(1), 141 (2014).
http://dx.doi.org/10.1122/1.4826939
80.
Tanaka, H. , and T. Araki, “ Spontaneous coarsening of a colloidal network driven by self-generated mechanical stress,” Europhys. Lett. 79(5), 58003 (2007).
http://dx.doi.org/10.1209/0295-5075/79/58003
81.
Tanguy, A. , J. Wittmer, F. Leonforte, and J.-L. Barrat, “ Continuum limit of amorphous elastic bodies: A finite-size study of low-frequency harmonic vibrations,” Phys. Rev. B 66(17), 174205 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.174205
82.
Thompson, A. P. , S. J. Plimpton, and W. Mattson, “ General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions,” J. Chem. Phys. 131, 154107 (2009).
http://dx.doi.org/10.1063/1.3245303
83.
Trappe, V. , V. Prasad, L. Cipelletti, P. Segre, and D. Weitz, “ Jamming phase diagram for attractive particles,” Nature 411(6839), 772775 (2001).
http://dx.doi.org/10.1038/35081021
84.
van der Vaart, K. , Y. Rahmani, R. Zargar, Z. Hu, D. Bonn, and P. Schall, “ Rheology of concentrated soft and hard-sphere suspensions,” J. Rheol. 57(4), 11951209 (2013).
http://dx.doi.org/10.1122/1.4808054
85.
Wyart, M. , H. Liang, A. Kabla, and L. Mahadevan, “ Elasticity of floppy and stiff random networks,” Phys. Rev. Lett. 101, 215501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.215501
86.
Yan, C. , A. Altunbas, T. Yucel, R. P. Nagarkar, J. P. Schneider, and D. J. Pochan, “ Injectable solid hydrogel: Mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels,” Soft Matter 6, 51435156 (2010).
http://dx.doi.org/10.1039/c0sm00642d
87.
Zaccone, A. , H. Wu, and E. Del Gado, “ Elasticity of arrested short-ranged attractive colloids: Homogeneous and heterogeneous glasses,” Phys. Rev. Lett. 103, 208301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.208301
http://aip.metastore.ingenta.com/content/sor/journal/jor2/58/5/10.1122/1.4882021
Loading
/content/sor/journal/jor2/58/5/10.1122/1.4882021
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/sor/journal/jor2/58/5/10.1122/1.4882021
2014-08-25
2016-09-26

Abstract

We use numerical simulations and an athermal quasistatic shear protocol to investigate the yielding of a model colloidal gel. Under increasing deformation, the elastic regime is followed by a significant stiffening before yielding takes place. A space-resolved analysis of deformations and stresses unravel how the complex load curve observed is the result of stress localization and that the yielding can take place by breaking a very small fraction of the network connections. The stiffening corresponds to the stretching of the network chains, unbent, and aligned along the direction of maximum extension. It is characterized by a strong localization of tensile stresses that triggers the breaking of a few network nodes at around 30% of strain. Increasing deformation favors further breaking but also shear-induced bonding, eventually leading to a large-scale reorganization of the gel structure at the yielding. At low enough shear rates, density and velocity profiles display significant spatial inhomogeneity during yielding in agreement with experimental observations.

Loading

Full text loading...

/deliver/fulltext/sor/journal/jor2/58/5/1.4882021.html;jsessionid=2SsMZdX9ALs04q9HNgsSkx5u.x-aip-live-03?itemId=/content/sor/journal/jor2/58/5/10.1122/1.4882021&mimeType=html&fmt=ahah&containerItemId=content/sor/journal/jor2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=journalofrheology.org/58/5/10.1122/1.4882021&pageURL=http://scitation.aip.org/content/sor/journal/jor2/58/5/10.1122/1.4882021'
Right1,Right2,Right3,