Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/sor/journal/jor2/58/6/10.1122/1.4890747
1.
Andreotti, B. , J.-L. Barrat , and C. Heussinger , “ Shear flow of non-Brownian suspensions close to jamming,” Phys. Rev. Lett. 109, 105901 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.105901
2.
Bagnold, R. A. , “ Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear,” Proc. R. Soc. London, Ser. A 225, 4963 (1954).
http://dx.doi.org/10.1098/rspa.1954.0186
3.
Ball, R. C. , and J. R. Melrose , “ Lubrication breakdown in hydrodynamic simulations of concentrated colloids,” Adv. Colloid Interface Sci. 59, 1930 (1995).
http://dx.doi.org/10.1016/0001-8686(95)80003-L
4.
Ball, R. C. , and J. R. Melrose , “ A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces,” Physica A 247, 444472 (1997).
http://dx.doi.org/10.1016/S0378-4371(97)00412-3
5.
Barnes, H. A. , “ Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids,” J. Rheol. 33, 329366 (1989).
http://dx.doi.org/10.1122/1.550017
6.
Batchelor, G. K. , “ The stress system in a suspension of force-free particles,” J. Fluid Mech. 41, 545570 (1970).
http://dx.doi.org/10.1017/S0022112070000745
7.
Behrens, S. H. , and D. G. Grier , “ The charge of glass and silica surfaces,” J. Chem. Phys. 115, 67166721 (2001).
http://dx.doi.org/10.1063/1.1404988
8.
Bender, J. , and N. J. Wagner , “ Reversible shear thickening in monodisperse and bidisperse colloidal dispersions,” J. Rheol. 40, 899916 (1996).
http://dx.doi.org/10.1122/1.550767
9.
Bender, J. W. , and N. J. Wagner , “ Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions,” J. Colloid Interface Sci. 172, 171184 (1995).
http://dx.doi.org/10.1006/jcis.1995.1240
10.
Bertrand, E. , J. Bibette , and V. Schmitt , “ From shear thickening to shear-induced jamming,” Phys. Rev. E 66, 060401 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.060401
11.
Bi, D. , J. Zhang , B. Chakraborty , and R. P. Behringer , “ Jamming by shear,” Nature 480, 355358 (2011).
http://dx.doi.org/10.1038/nature10667
12.
Blanc, F. , F. Peters , and E. Lemaire , “ Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions,” Phys. Rev. Lett. 107, 208302 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.208302
13.
Boersma, W. H. , J. Laven , and H. N. Stein , “ Shear thickening (dilatancy) in concentrated dispersions,” AIChE J. 36, 321332 (1990).
http://dx.doi.org/10.1002/aic.690360302
14.
Boersma, W. H. , P. J. M. Baets , J. Laven , and H. N. Stein , “ Time-dependent behavior and wall slip in concentrated shear thickening dispersions,” J. Rheol. 35, 10931120 (1991).
http://dx.doi.org/10.1122/1.550167
15.
Bossis, G. , and J. F. Brady , “ The rheology of Brownian suspensions,” J. Chem. Phys. 91, 18661874 (1989).
http://dx.doi.org/10.1063/1.457091
16.
Boyer, F. , É. Guazzelli , and O. Pouliquen , “ Unifying suspension and granular rheology,” Phys. Rev. Lett. 107, 188301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.188301
17.
Brady, J. F. , and G. Bossis , “ The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation,” J. Fluid Mech. 155, 105129 (1985).
http://dx.doi.org/10.1017/S0022112085001732
18.
Brady, J. F. , and G. Bossis , “ Stokesian dynamics,” Annu. Rev. Fluid Mech. 20, 111157 (1988).
http://dx.doi.org/10.1146/annurev.fl.20.010188.000551
19.
Brown, E. , and H. M. Jaeger , “ Dynamic jamming point for shear thickening suspensions,” Phys. Rev. Lett. 103, 086001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.086001
20.
Brown, E. , and H. M. Jaeger , “ The role of dilation and confining stresses in shear thickening of dense suspensions,” J. Rheol. 56, 875923 (2012).
http://dx.doi.org/10.1122/1.4709423
21.
Brown, E. , and H. M. Jaeger , “ Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming,” Rep. Prog. Phys. 77, 046602 (2014).
http://dx.doi.org/10.1088/0034-4885/77/4/046602
22.
Cates, M. E. , J. P. Wittmer , J.-P. Bouchaud , and P. Claudin , “ Jamming, force chains, and fragile matter,” Phys. Rev. Lett. 81, 18411844 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1841
23.
Cheng, X. , J. H. McCoy , J. N. Israelachvili , and I. Cohen , “ Imaging the microscopic structure of shear thinning and thickening colloidal suspensions,” Science 333, 12761279 (2011).
http://dx.doi.org/10.1126/science.1207032
24.
Couturier, É. , F. Boyer , O. Pouliquen , and É. Guazzelli , “ Suspensions in a tilted trough: Second normal stress difference,” J. Fluid Mech. 686, 2639 (2011).
http://dx.doi.org/10.1017/jfm.2011.315
25.
Crawford, N. C. , S. K. R. Williams , D. Boldridge , and M. W. Liberatore , “ Shear-induced structures and thickening in fumed silica slurries,” Langmuir 29, 1291512923 (2013).
http://dx.doi.org/10.1021/la402631p
26.
Cundall, P. A. , and O. D. L. Strack , “ A discrete numerical model for granular assemblies,” Geotechnique 29, 4765 (1979).
http://dx.doi.org/10.1680/geot.1979.29.1.47
27.
da Cruz, F. , S. Emam , M. Prochnow , J.-N. Roux , and F. Chevoir , “ Rheophysics of dense granular materials: Discrete simulation of plane shear flows,” Phys. Rev. E 72, 021309 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.021309
28.
Dai, S.-C. , E. Bertevas , F. Qi , and R. I. Tanner , “ Viscometric functions for noncolloidal sphere suspensions with Newtonian matrices,” J. Rheol. 57, 493510 (2013).
http://dx.doi.org/10.1122/1.4774325
29.
Davis, R. H. , “ Effects of surface roughness on a sphere sedimenting through a dilute suspension of neutrally buoyant spheres,” Phys. Fluids A 4, 26072619 (1992).
http://dx.doi.org/10.1063/1.858450
30.
Dbouk, T. , L. Lobry , and E. Lemaire , “ Normal stresses in concentrated non-Brownian suspensions,” J. Fluid Mech. 715, 239272 (2013).
http://dx.doi.org/10.1017/jfm.2012.516
31.
Deboeuf, A. , G. Gauthier , J. Martin , Y. Yurkovetsky , and J. F. Morris , “ Particle pressure in a sheared suspension: A bridge from osmosis to granular dilatancy,” Phys. Rev. Lett. 102, 108301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.108301
32.
Denn, M. M. , and J. F. Morris , “ Rheology of non-Brownian suspensions,” Annu. Rev. Chem. Biomol. Eng. 5, 203–228 (2014).
33.
D'Haene, P. , J. Mewis , and G. G. Fuller , “ Scattering dichroism measurements of flow-induced structure of a shear thickening suspension,” J. Colloid Interface Sci. 156, 350358 (1993).
http://dx.doi.org/10.1006/jcis.1993.1122
34.
Fagan, M. E. , and C. F. Zukoski , “ The rheology of charge stabilized silica suspensions,” J. Rheol. 41, 373397 (1997).
http://dx.doi.org/10.1122/1.550876
35.
Fall, A. , A. Lemaître , F. Bertrand , D. Bonn , and G. Ovarlez , “ Shear thickening and migration in granular suspensions,” Phys. Rev. Lett. 105, 268303 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.268303
36.
Fall, A. , F. Bertrand , G. Ovarlez , and D. Bonn , “ Shear thickening of cornstarch suspensions,” J. Rheol. 56, 575591 (2012).
http://dx.doi.org/10.1122/1.3696875
37.
Fernandez, N. , R. Mani , D. Rinaldi , D. Kadau , M. Mosquet , H. Lombois-Burger , J. Cayer-Barrioz , H. J. Herrmann , N. D. Spencer , and L. Isa , “ Microscopic mechanism for shear thickening of non-Brownian suspensions,” Phys. Rev. Lett. 111, 108301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.108301
38.
Forterre, Y. , and O. Pouliquen , “ Flows of dense granular media,” Annu. Rev. Fluid Mech. 40, 124 (2008).
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102142
39.
Foss, D. R. , and J. F. Brady , “ Structure, diffusion and rheology of Brownian suspensions by stokesian dynamics simulation,” J. Fluid Mech. 407, 167200 (2000).
http://dx.doi.org/10.1017/S0022112099007557
40.
Freundlich, H. , and H. L. Roder , “ Dilatancy and its relation to thixotropy,” Trans. Faraday Soc. 34, 308316 (1938).
http://dx.doi.org/10.1039/tf9383400308
41.
Frith, W. J. , P. d'Haene , R. Buscall , and J. Mewis , “ Shear thickening in model suspensions of sterically stabilized particles,” J. Rheol. 40, 531548 (1996).
http://dx.doi.org/10.1122/1.550791
42.
Gao, G.-J. , J. Blawzdziewicz , C. S. O'Hern , and M. Shattuck , “ Experimental demonstration of nonuniform frequency distributions of granular packings,” Phys. Rev. E 80, 061304 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.061304
43.
Hébraud, P. , and D. Lootens , “ Concentrated suspensions under flow: Shear-thickening and jamming,” Mod. Phys. Lett. B 19, 613624 (2005).
http://dx.doi.org/10.1142/S0217984905008608
44.
Heussinger, C. , “ Shear thickening in granular suspensions: Inter-particle friction and dynamically correlated clusters,” Phys. Rev. E 88, 050201(R) (2013).
http://dx.doi.org/10.1103/PhysRevE.88.050201
45.
Ho, C.-M. , and Y.-C. Tai , “ Micro-electro-mechanical-systems (mems) and fluid flows,” Annu. Rev. Fluid Mech. 30, 579612 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.579
46.
Hoffman, R. L. , “ Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability,” Trans. Soc. Rheol. 16, 155173 (1972).
http://dx.doi.org/10.1122/1.549250
47.
Hoffman, R. L. , “ Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests,” J. Colloid Interface Sci. 46, 491506 (1974).
http://dx.doi.org/10.1016/0021-9797(74)90059-9
48.
Hoffman, R. L. , “ Explanations for the cause of shear thickening in concentrated colloidal suspensions,” J. Rheol. 42, 111123 (1998).
http://dx.doi.org/10.1122/1.550884
49.
Israelachvili, J. N. , Intermolecular and Surface Forces ( Academic Press, New York, 2011).
50.
Jeffrey, D. J. , “ The calculation of the low Reynolds number resistance functions for two unequal spheres,” Phys. Fluids A 4, 1629 (1992).
http://dx.doi.org/10.1063/1.858494
51.
Jeffrey, D. J. , and Y. Onishi , “ Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow,” J. Fluid Mech. 139, 261290 (1984).
http://dx.doi.org/10.1017/S0022112084000355
52.
Jerkins, M. , M. Schröter , H. L. Swinney , T. J. Senden , M. Saadatfar , and T. Aste , “ Onset of mechanical stability in random packings of frictional spheres,” Phys. Rev. Lett. 101, 018301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.018301
53.
Karim, M. Y. , and E. I. Corwin , “ Eliminating friction with friction: 2d Janssen effect in a friction-driven system,” Phys. Rev. Lett. 112, 188001 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.188001
54.
Kawasaki, T. , A. Ikeda , and L. Berthier , “ Thinning or thickening? multiple rheological regimes in dense suspensions of soft particles,” Europhysics Letters (to be published); e-print arXiv:1404.4778[cond-mat].
55.
Krieger, I. M. , “ Rheology of monodisperse lattices,” Adv. Colloid Interface Sci. 3, 111136 (1972).
http://dx.doi.org/10.1016/0001-8686(72)80001-0
56.
Kulkarni, S. D. , and J. F. Morris , “ Ordering transition and structural evolution under shear in Brownian suspensions,” J. Rheol. 53, 417439 (2009).
http://dx.doi.org/10.1122/1.3073754
57.
Larsen, R. J. , J.-W. Kim , C. F. Zukoski , and D. A. Weitz , “ Elasticity of dilatant particle suspensions during flow,” Phys. Rev. E 81, 011502 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.011502
58.
Laun, H. M. , R. Bung , S. Hess , W. Loose , O. Hess , K. Hahn , HäE. dicke , R. Hingmann , F. Schmidt , and P. Lindnerm , “ Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow,” J. Rheol. 36, 743787 (1992).
http://dx.doi.org/10.1122/1.550314
59.
Lee, M. , M. Alcoutlabi , J. J. Magda , C. Dibble , M. J. Solomon , X. Shi , and G. B. McKenna , “ The effect of the shear-thickening transition of model colloidal spheres on the sign of n1 and on the radial pressure profile in torsional shear flows,” J. Rheol. 50, 293311 (2006).
http://dx.doi.org/10.1122/1.2188567
60.
Lees, A. W. , and S. F. Edwards , “ The computer study of transport processes under extreme conditions,” J. Phys. C. 5, 19211930 (1972).
http://dx.doi.org/10.1088/0022-3719/5/15/006
61.
Lemaître, A. , J.-N. Roux , and F. Chevoir , “What do dry granular flows tell us about dense non-Brownian suspension rheology?” Rheol. Acta 48, 925942 (2009).
http://dx.doi.org/10.1007/s00397-009-0379-3
62.
Lerner, E. , G. Düring , and M. Wyart , “ A unified framework for non-Brownian suspension flows and soft amorphous solids,” Proc. Natl. Acad. Sci. U.S.A. 109, 47984803 (2012).
http://dx.doi.org/10.1073/pnas.1120215109
63.
Lootens, D. , H. Van Damme , and P. Hébraud , “ Giant stress fluctuations at the jamming transition,” Phys. Rev. Lett. 90, 178301 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.178301
64.
Lootens, D. , H. van Damme , Y. Hémar , and P. Hébraud , “ Dilatant flow of concentrated suspensions of rough particles,” Phys. Rev. Lett. 95, 268302 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.268302
65.
Lootens, D. , P. Hébraud , E. Lécolier , and H. Van Damme , “ Gelation, shear-thinning and shear-thickening in cement slurries,” Oil Gas Sci. Technol.- Rev. IFP. 59, 3140 (2004).
http://dx.doi.org/10.2516/ogst:2004004
66.
Luding, S. , “ Cohesive, frictional powders: Contact models for tension,” Granular Matter 10, 235246 (2008).
http://dx.doi.org/10.1007/s10035-008-0099-x
67.
Maranzano, B. J. , and N. J. Wagner , “ The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions,” J. Rheol. 45, 12051222 (2001a).
http://dx.doi.org/10.1122/1.1392295
68.
Maranzano, B. J. , and N. J. Wagner , “ The effects of particle size on reversible shear thickening of concentrated colloidal dispersions,” J. Chem. Phys. 114, 1051410527 (2001b).
http://dx.doi.org/10.1063/1.1373687
69.
Maranzano, B. J. , and N. J. Wagner , “ Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition,” J. Chem. Phys. 117, 1029110302 (2002).
http://dx.doi.org/10.1063/1.1519253
70.
Melrose, J. R. , and R. C. Ball , “ “contact networks” in continuously shear thickening colloids,” J. Rheol. 48, 961978 (2004a).
http://dx.doi.org/10.1122/1.1784784
71.
Melrose, J. R. , and R. C. Ball , “ Continuous shear thickening transitions in model concentrated colloids—The role of interparticle forces,” J. Rheol. 48, 937960 (2004b).
http://dx.doi.org/10.1122/1.1784783
72.
Metzner, A. B. , and M. Whitlock , “ Flow behavior of concentrated (dilatant) suspensions,” Trans. Soc. Rheol. 2, 239253 (1958).
http://dx.doi.org/10.1122/1.548831
73.
Mewis, J. , and N. J. Wagner , Colloidal Suspension Rheology ( Cambridge University Press, New York, 2011).
74.
Morris, J. F. , “ A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow,” Rheol. Acta 48, 909923 (2009).
http://dx.doi.org/10.1007/s00397-009-0352-1
75.
Nakanishi, H. , S. Nagahiro , and N. Mitarai , “ Fluid dynamics of dilatant fluids,” Phys. Rev. E 85, 011401 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.011401
76.
Nazockdast, E. , and J. F. Morris , “ Pair-particle dynamics and microstructure in sheared colloidal suspensions: Simulation and Smoluchowski theory,” Phys. Fluids 25, 070601 (2013).
http://dx.doi.org/10.1063/1.4812799
77.
Newstein, M. C. , H. Wang , N. P. Balsara , A. A. Lefebvre , Y. Shnidman , H. Watanabe , K. Osaki , T. Shikata , H. Niwa , and Y. Morishima , “ Microstructural changes in a colloidal liquid in the shear thinning and shear thickening regimes,” J. Chem. Phys. 111, 48274838 (1999).
http://dx.doi.org/10.1063/1.479245
78.
O'Brien, V. T. , and M. E. Mackay , “ Stress components and shear thickening of concentrated hard sphere suspensions,” Langmuir 16, 79317938 (2000).
http://dx.doi.org/10.1021/la000050h
79.
O'Hern, C. S. , L. E. Silbert , A. J. Liu , and S. R. Nagel , “ Jamming at zero temperature and zero applied stress: The epitome of disorder,” Phys. Rev. E 68, 011306 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.011306
80.
Otsuki, M. , and H. Hayakawa , “ Critical scaling near jamming transition for frictional granular particles,” Phys. Rev. E 83, 051301 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.051301
81.
Phung, T. N. , J. F. Brady , and G. Bossis , “ Stokesian dynamics simulation of Brownian suspensions,” J. Fluid Mech. 313, 181207 (1996).
http://dx.doi.org/10.1017/S0022112096002170
82.
Seto, R. , R. Mari , J. F. Morris , and M. M. Denn , “ Discontinuous shear thickening of frictional hard-sphere suspensions,” Phys. Rev. Lett. 111, 218301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.218301
83.
Silbert, L. E. , “ Jamming of frictional spheres and random loose packing,” Soft Matter 6, 29182924 (2010).
http://dx.doi.org/10.1039/c001973a
84.
Silbert, L. E. , D. Ertaş , G. Grest , T. C. Halsey , and D. Levine , “ Geometry of frictionless and frictional sphere packings,” Phys. Rev. E 65, 16 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.031304
85.
Singh, A. , and P. R. Nott , “ Experimental measurements of the normal stresses in sheared stokesian suspensions,” J. Fluid Mech. 490, 293320 (2003).
http://dx.doi.org/10.1017/S0022112003005366
86.
Song, C. , P. Wang , and H. A. Makse , “ A phase diagram for jammed matter,” Nature 453, 629632 (2008).
http://dx.doi.org/10.1038/nature06981
87.
Trulsson, M. , B. Andreotti , and P. Claudin , “ Transition from the viscous to inertial regime in dense suspensions,” Phys. Rev. Lett. 109, 118305 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.118305
88.
Wagner, N. J. , and J. F. Brady , “ Shear thickening in colloidal dispersions,” Phys. Today 62(10), 2732 (2009).
http://dx.doi.org/10.1063/1.3248476
89.
Walton, O. R. , “ Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres,” Mech. Mater. 16, 239247 (1993a).
http://dx.doi.org/10.1016/0167-6636(93)90048-V
90.
Walton, O. R. , “ Numerical simulation of inelastic, frictional particle-particle interactions,” in Particulate Two-Phaseflow (Butterworth-Heinemann Boston, 1993b ), Chap. 25, pp. 884911.
91.
Watanabe, H. , M.-L. Yao , K. Osaki , T. Shikata , H. Niwa , and Y. Morishima , “ Nonlinear rheology of a concentrated spherical silica suspension,” Rheol. Acta 36, 524533 (1997).
http://dx.doi.org/10.1007/BF00368130
92.
Watanabe, H. , M.-L. Yao , K. Osaki , T. Shikata , H. Niwa , Y. Morishima , N. P. Balsara , and H. Wang , “ Nonlinear rheology and flow-induced structure in a concentrated spherical silica suspension,” Rheol. Acta 37, 16 (1998).
http://dx.doi.org/10.1007/s003970050085
93.
Williamson, R. V. , “ Some unusual properties of colloidal dispersions,” J. Phys. Chem. 35, 354359 (1930).
http://dx.doi.org/10.1021/j150319a023
94.
Williamson, R. V. , and W. W. Hecker , “ Some properties of dispersions of the quicksand type,” Ind. Eng. Chem. 23, 667670 (1931).
http://dx.doi.org/10.1021/ie50258a015
95.
Wyart, M. , and M. E. Cates , “ Discontinuous shear thickening without inertia in dense non-Brownian suspensions,” Phys. Rev. Lett. 112, 098302 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.098302
96.
Yurkovetsky, Y. , and J. F. Morris , “ Particle pressure in sheared Brownian suspensions,” J. Rheol. 52, 141164 (2008).
http://dx.doi.org/10.1122/1.2807443
97.
Zarraga, I. E. , D. A. Hill , and D. T. Leighton , “ The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids,” J. Rheol. 44, 185220 (2000).
http://dx.doi.org/10.1122/1.551083
98.
Zhao, Y. , and R. H. Davis , “ Interaction of two touching spheres in a viscous fluid,” Chem. Eng. Sci. 57, 19972006 (2002).
http://dx.doi.org/10.1016/S0009-2509(02)00104-5
99.
See supplementary material (movies) at http://dx.doi.org/10.1122/1.4890747 for (a) the contact network at volume fraction 0.56 around the DST transition and (b) the configuration under flow seen from upstream in the flow direction.[Supplementary Material]
http://aip.metastore.ingenta.com/content/sor/journal/jor2/58/6/10.1122/1.4890747
Loading
/content/sor/journal/jor2/58/6/10.1122/1.4890747
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/sor/journal/jor2/58/6/10.1122/1.4890747
2014-09-10
2016-10-01

Abstract

Particles suspended in a Newtonian fluid raise the viscosity and also generally give rise to a shear-rate dependent rheology. In particular, pronounced shear thickening may be observed at large solid volume fractions. In a recent article [R. Seto ., Phys. Rev. Lett. , 218301 (2013)], we have considered the minimum set of components to reproduce the experimentally observed shear thickening behavior, including discontinuous shear thickening. We have found frictional contact forces to be essential and were able to reproduce the experimental behavior by a simulation including this physical ingredient along with viscous lubrication. In the present article, we thoroughly investigate the effect of friction and express it in the framework of the jamming transition. The viscosity divergence at the jamming transition has been a well known phenomenon in suspension rheology, as reflected in many empirical laws for the viscosity. Friction can affect this divergence, and in particular the jamming packing fraction is reduced if particles are frictional. Within the physical description proposed here, shear thickening is a direct consequence of this effect: As the shear rate increases, friction is increasingly incorporated as more contacts form, leading to a transition from a mostly frictionless to a mostly frictional rheology. This result is significant because it shifts the emphasis from lubrication hydrodynamics and detailed microscopic interactions to geometry and steric constraints close to the jamming transition.

Loading

Full text loading...

/deliver/fulltext/sor/journal/jor2/58/6/1.4890747.html;jsessionid=PFt5vHhgrDt_HAckmjSnRaml.x-aip-live-02?itemId=/content/sor/journal/jor2/58/6/10.1122/1.4890747&mimeType=html&fmt=ahah&containerItemId=content/sor/journal/jor2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=journalofrheology.org/58/6/10.1122/1.4890747&pageURL=http://scitation.aip.org/content/sor/journal/jor2/58/6/10.1122/1.4890747'
Right1,Right2,Right3,