Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/sor/journal/jor2/60/2/10.1122/1.4941423
1.
1. Macosko, C. W. , Rheology: Principles, Measurements and Applications ( Wiley, New York, 1994).
2.
2. Hyun, K. , S. H. Kim, K. H. Ahn, and S. J. Lee, “ Large amplitude oscillatory shear as a way to classify the complex fluids,” J. Non-Newtonian Fluid Mech. 107, 5165 (2002).
http://dx.doi.org/10.1016/S0377-0257(02)00141-6
3.
3. Hyun, K. , M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee, R. H. Ewoldt, and G. H. McKinley, “ A review of nonlinear oscillatory shear tests: Analysis and applications of large amplitude oscillatory shear (LAOS),” Prog. Polym. Sci. 36, 16971753 (2011).
http://dx.doi.org/10.1016/j.progpolymsci.2011.02.002
4.
4. Jordan, D. W. , and P. Smith, Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems ( Oxford University, Oxford, United Kingdom, 1999).
5.
5. Wilhelm, M. , “ Fourier-transform rheology,” Macromol. Mater. Eng. 287, 83105 (2002).
http://dx.doi.org/10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
6.
6. Hyun, K. , and M. Wilhelm, “ Establishing a new mechanical nonlinear Q coefficient from FT-rheology: First investigation of entangled linear and comb polymer model systems,” Macromolecules 42, 411422 (2009).
http://dx.doi.org/10.1021/ma8017266
7.
7. Giacomin, A. J. , R. B. Bird, L. M. Johnson, and A. W. Mix, “ Large-amplitude oscillatory shear flow from the corotational Maxwell model,” J. Non-Newtonian Fluid Mech. 166, 10811099 (2011).
http://dx.doi.org/10.1016/j.jnnfm.2011.04.002
8.
8. Hatzikiriakos, S. G. , and J. M. Dealy, “ Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies,” J. Rheol. 35, 497523 (1991).
http://dx.doi.org/10.1122/1.550178
9.
9. Adrian, D. W. , and A. J. Giacomin, “ The quasiperiodic nature of a polyurethane melt in oscillatory shear,” J. Rheol. 36, 12271243 (1992).
http://dx.doi.org/10.1122/1.550309
10.
10. Kim, J. , D. Merger, M. Wilhelm, and M. E. Helgeson, “ Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear,” J. Rheol. 58, 13591390 (2014).
http://dx.doi.org/10.1122/1.4882019
11.
11. Graham, M. D. , “ Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows,” J. Rheol. 39, 697712 (1995).
http://dx.doi.org/10.1122/1.550652
12.
12. Atalik, K. , and R. Keunings, “ On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear,” J. Non-Newtonian Fluid Mech. 122, 107116 (2004).
http://dx.doi.org/10.1016/j.jnnfm.2003.11.012
13.
13. Philippoff, W. , “ Vibrational measurements with large amplitudes,” Trans. Soc. Rheol. 10, 317334 (1966).
http://dx.doi.org/10.1122/1.549049
14.
14. Cho, K. S. , K. Hyun, K. H. Ahn, and S. J. Lee, “ A geometrical interpretation of large amplitude oscillatory shear response,” J. Rheol. 49, 747758 (2005).
http://dx.doi.org/10.1122/1.1895801
15.
15. Ewoldt, R. H. , A. E. Hosoi, and G. H. McKinley, “ New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear,” J. Rheol. 52, 14271458 (2008).
http://dx.doi.org/10.1122/1.2970095
16.
16. Rogers, S. A. , B. M. Erwin, D. Vlassopoulos, and M. Cloitre, “ A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid,” J. Rheol. 55, 435458 (2011).
http://dx.doi.org/10.1122/1.3544591
17.
17. Rogers, S. A. , and M. Paul Lettinga, “ A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models,” J. Rheol. 56, 125 (2012).
http://dx.doi.org/10.1122/1.3662962
18.
18. Nam, J. G. , K. Hyun, K. H. Ahn, and S. J. Lee, “ Prediction of normal stresses under large amplitude oscillatory shear flow,” J. Non-Newtonian Fluid Mech. 150, 110 (2008).
http://dx.doi.org/10.1016/j.jnnfm.2007.10.002
19.
19. Nam, J. G. , K. H. Ahn, S. J. Lee, and K. Hyun, “ First normal stress difference of entangled polymer solutions in large amplitude oscillatory shear flow,” J. Rheol. 54, 12431265 (2010).
http://dx.doi.org/10.1122/1.3483611
20.
20. Calin, A. , M. Wilhelm, and C. Balan, “ Determination of the non-linear parameter (mobility factor) of the Giesekus constitutive model using LAOS procedure,” J. Non-Newtonian Fluid Mech. 165, 15641577 (2010).
http://dx.doi.org/10.1016/j.jnnfm.2010.08.008
21.
21. Ewoldt, R. H. , and G. H. McKinley, “ On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves,” Rheol. Acta. 49, 213219 (2010).
http://dx.doi.org/10.1007/s00397-009-0408-2
22.
22. Gurnon, A. K. , and N. J. Wagner, “ Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive model parameters: Giesekus model of banding and nonbanding wormlike micelles,” J. Rheol. 56, 333351 (2012).
http://dx.doi.org/10.1122/1.3684751
23.
23. Bae, J.-E. , and K. S. Cho, “ Semianalytical methods for the determination of the nonlinear parameter of nonlinear viscoelastic constitutive equations from LAOS data,” J. Rheol. 59, 525555 (2015).
http://dx.doi.org/10.1122/1.4907976
24.
24. Pearson, D. S. , and W. E. Rochefort, “ Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields,” J. Polym. Sci., Part B: Polym. Phys. 20, 8398 (1982).
http://dx.doi.org/10.1002/pol.1982.180200107
25.
25. Bharadwaj, N. A. , and R. H. Ewoldt, “ The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear,” J. Rheol. 58, 891910 (2014).
http://dx.doi.org/10.1122/1.4874344
26.
26. Swan, J. W. , E. M. Furst, and N. J. Wagner, “ The medium amplitude oscillatory shear of semi-dilute colloidal dispersions. Part I: Linear response and normal stress differences,” J. Rheol. 58, 307337 (2014).
http://dx.doi.org/10.1122/1.4861071
27.
27. Vlahovska, P. , J. Blawzdziewicz, and M. Loewenberg, “ Nonlinear rheology of a dilute emulsion of surfactant-covered spherical drops in time-dependent flows,” J. Fluid Mech. 463, 124 (2002).
http://dx.doi.org/10.1017/S0022112002008571
28.
28. Renardy, Y. , “ Numerical simulation of a drop undergoing large amplitude oscillatory shear,” Rheol. Acta. 45, 223227 (2006).
http://dx.doi.org/10.1007/s00397-005-0011-0
29.
29. Bird, R. B. , A. Giacomin, A. Schmalzer, and C. Aumnate, “ Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response,” J. Chem. Phys. 140, 074904 (2014).
http://dx.doi.org/10.1063/1.4862899
30.
30. Bozorgi, Y. , and P. T. Underhill, “ Large-amplitude oscillatory shear rheology of dilute active suspensions,” Rheol. Acta. 53, 899909 (2014).
http://dx.doi.org/10.1007/s00397-014-0806-y
31.
31. Leahy, B. D. , D. L. Koch, and I. Cohen, “ The effect of shear flow on the rotational diffusion of a single axisymmetric particle,” J. Fluid Mech. 772, 4279 (2015).
http://dx.doi.org/10.1017/jfm.2015.186
32.
32. Khair, A. S. , “ On a suspension of nearly spherical colloidal particles under large amplitude oscillatory shear flow,” J. Fluid Mech. (in press).
33.
33. Giesekus, H. , “ A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility,” J. Non-Newtonian Fluid Mech. 11, 69109 (1982).
http://dx.doi.org/10.1016/0377-0257(82)85016-7
34.
34. Helgeson, M. E. , P. A. Vasquez, E. W. Kaler, and N. J. Wagner, “ Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition,” J. Rheol. 53, 727756 (2009).
http://dx.doi.org/10.1122/1.3089579
35.
35. Bird, R. B. , and J. M. Wiest, “ Anisotropic effects in dumbbell kinetic theory,” J. Rheol. 29, 519532 (1985).
http://dx.doi.org/10.1122/1.549800
36.
36. Wiest, J. M. , and R. B. Bird, “ Molecular extension from the Giesekus model,” J. Non-Newtonian Fluid Mech. 22, 115119 (1986).
http://dx.doi.org/10.1016/0377-0257(86)80007-6
37.
37. Larson, R. G. , Constitutive Equations for Polymer Melts and Solutions ( Boston Butterworth, Boston, MA, 1988).
38.
38. Yoo, J. Y. , and H. Ch. Choi, “ On the steady simple shear flows of the one-mode Giesekus model,” Rheol. Acta 28, 1324 (1989).
http://dx.doi.org/10.1007/BF01354764
39.
39. Phan-Thien, N. , and R. I. Tanner, “ A new constitutive equation derived from network theory,” J. Non-Newtonian Fluid Mech. 2, 353365 (1977).
http://dx.doi.org/10.1016/0377-0257(77)80021-9
40.
40. Helgeson, M. E. , M. D. Reichert, Y. Thomas Hu, and N. J. Wagner, “ Relating shear banding, structure, and phase behavior in wormlike micellar solutions,” Soft Matter 5, 38583869 (2009).
http://dx.doi.org/10.1039/b900948e
41.
41. Giesekus, H. , “ Stressing behavior in simple shear flow as predicted by a new constitutive model for polymer fluids,” J. Non-Newtonian Fluid Mech. 12, 367374 (1983).
http://dx.doi.org/10.1016/0377-0257(83)85009-5
42.
42. Likhtman, A. E. , and R. S. Graham, “ Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-poly equation,” J. Non-Newtonian Fluid Mech. 114, 112 (2003).
http://dx.doi.org/10.1016/S0377-0257(03)00114-9
43.
43. C. J. Dimitriou, L. Casanellas, T. J. Ober, and G. H. McKinley, “ Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear,” Rheol. Acta 51, 395411 (2012).
http://dx.doi.org/10.1007/s00397-012-0619-9
44.
44. Gurnon, A. K. , C. R. Lopez-Barron, A. P. R. Eberle, L. Porcar, and N. J. Wagner, “ Spatiotemporal stress and structure evolution in dynamically sheared polymer-like micellar solutions,” Soft Matter 10, 28892898 (2014).
http://dx.doi.org/10.1039/C3SM53113A
45.
45. Moorcroft, R. L. , and S. M. Fielding, “ Shear banding in time-dependent flows of polymers and wormlike micelles,” J. Rheol. 58, 103147 (2014).
http://dx.doi.org/10.1122/1.4842155
http://aip.metastore.ingenta.com/content/sor/journal/jor2/60/2/10.1122/1.4941423
Loading
/content/sor/journal/jor2/60/2/10.1122/1.4941423
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/sor/journal/jor2/60/2/10.1122/1.4941423
2016-02-10
2016-12-07

Abstract

An asymptotic solution to the Giesekus constitutive model of polymeric fluids under homogenous, oscillatory simple shear flow at large Weissenberg number, , and large strain amplitude, , is constructed. Here, , where is the polymerrelaxation time and is the shear rate amplitude, and is a Deborah number, where is the oscillation frequency. Under these conditions, we show that the first normal stress difference is the dominant rheological signal, scaling as , where is the elastic modulus. The shear stress and second normal stress difference are of order . The polymer stress exhibits pronounced nonlinear oscillations, which are partitioned into two temporal regions: (i) A “core region,” on the time scale of , reflecting a balance between anisotropic drag and orientation of polymers in the strong flow; and (ii) a “turning region,” centered around times when the shear flow reverses, whose duration is on the hybrid time scale , in which flow-driven orientation, anisotropic drag, and relaxation are all leading order effects. Our asymptotic solution is verified against numerical computations, and a qualitative comparison with relevant experimental observations is presented. Our results can, in principle, be employed to extract the nonlinearity (anisotropic drag) parameter, , of the Giesekus model from experimental data, without the need to fit the stress waveform over a complete oscillation cycle. Finally, we discuss our findings in relation to recent work on shear banding in oscillatory flows.

Loading

Full text loading...

/deliver/fulltext/sor/journal/jor2/60/2/1.4941423.html;jsessionid=jZVKbQIOo4XBYg4MiL2v4v8I.x-aip-live-06?itemId=/content/sor/journal/jor2/60/2/10.1122/1.4941423&mimeType=html&fmt=ahah&containerItemId=content/sor/journal/jor2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=journalofrheology.org/60/2/10.1122/1.4941423&pageURL=http://scitation.aip.org/content/sor/journal/jor2/60/2/10.1122/1.4941423'
Right1,Right2,Right3,