Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/sor/journal/jor2/60/4/10.1122/1.4948428
1.
1. Hoffman, A. S. , “ Hydrogels for biomedical applications,” Adv. Drug Delivery Rev. 54, 312 (2002).
http://dx.doi.org/10.1016/S0169-409X(01)00239-3
2.
2. Drury, J. L. , and D. J. Mooney, “ Hydrogels for tissue engineering: Scaffold design variables and applications,” Biomaterials 24, 43374351 (2003).
http://dx.doi.org/10.1016/S0142-9612(03)00340-5
3.
3. Rabillouda, T. , M. Chevalletb, S. Lucheb, and C. Lelongb, “ Two-dimensional gel electrophoresis in proteomics: Past, present and future,” J. Proteomics 73, 20642077 (2010).
http://dx.doi.org/10.1016/j.jprot.2010.05.016
4.
4. Deligkaris, K. , T. Sh. Tadele, W. Olthuis, and A. Berg, “ Hydrogel-based devices for biomedical applications,” Sens. Actuators B 147, 765774 (2010).
http://dx.doi.org/10.1016/j.snb.2010.03.083
5.
5. Qiu, Y. , and K. Park, “ Environment-sensitive hydrogels for drug delivery,” Adv. Drug Delivery Rev. 64, 4960 (2012).
http://dx.doi.org/10.1016/j.addr.2012.09.024
6.
6. Calvet, D. , J. Y. Wong, and S. Giasson, “ Rheological monitoring of polyacrylamide gelation: Importance of cross-link density and temperature,” Macromolecules 37, 77627771 (2004).
http://dx.doi.org/10.1021/ma049072r
7.
7. Wang, J. , and V. M. Ugaz, “ Using in situ rheology to characterize the microstructure in photopolymerized polyacrylamide gels for DNA electrophoresis,” Electrophoresis 27, 33493358 (2006).
http://dx.doi.org/10.1002/elps.200500910
8.
8. Savart, T. , C. Dove, and B. J. Love, “ In situ dynamic rheological study of polyacrylamide during gelation coupled with mathematical models of viscosity advancement,” Macromol. Mater. Eng. 295, 146152 (2010).
http://dx.doi.org/10.1002/mame.200900218
9.
9. Larsen, T. H. , and E. M. Furst, “ Microrheology of the liquid-solid transition during gelation,” Phys. Rev. Lett. 100, 146001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.146001
10.
10. Weiss, N. , and A. Silberberg, “ Inhomogeneity of polyacrylamide gel structure from permeability and viscoelasticity,” Br. Polym. J. 9, 144150 (1977).
http://dx.doi.org/10.1002/pi.4980090210
11.
11. Lin, W. C. , W. Fan, A. Marcellan, D. Hourdet, and C. Creton, “ Large strain and fracture properties of poly(dimethylacrylamide)/silica hybrid hydrogels,” Macromolecules 43, 25542563 (2010).
http://dx.doi.org/10.1021/ma901937r
12.
12. Denisin, A. K. , and B. L. Pruitt, “ Tuning the range of polyacrylamide gel stiffness for mechanobiology applications,” ACS Appl. Mater. Interfaces (published online).
13.
13. Baselga, J. , M. A. Llorente, I. Hernandez, and I. F. Pierola, “ Polyacrylamide gels. Process of network formation,” Eur. Polym. J. 25, 477480 (1989).
http://dx.doi.org/10.1016/0014-3057(89)90189-4
14.
14. Naghash, H. J. , and O. Okay, “ Formation and structure of polyacrylamide gels,” J. Appl. Polym. Sci. 60, 971979 (1996).
http://dx.doi.org/10.1002/(SICI)1097-4628(19960516)60:7<971::AID-APP7>3.0.CO;2-J
15.
15. Baselga, J. , M. A. Llorente, J. L. Nieto, I. Hernandez, and I. F. Pierola, “ Polyacrylamide networks. Sequence distribution of crosslinker,” Eur. Polym. J. 24, 161165 (1988).
http://dx.doi.org/10.1016/0014-3057(88)90145-0
16.
16. Rubinstein, M. , and H. Colby, Polymer Physics ( Oxford University, New York, NY, 2003).
17.
17. Ferry, J. D. , Viscoelastic Properties of Polymers, 3rd ed. ( John Wiley & Sons, New York, NY, 1980).
18.
18. Chambon, F. , and H. Winter, “ Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry,” J. Rheol. 31, 683697 (1987).
http://dx.doi.org/10.1122/1.549955
19.
19. Martin, J. E. , D. Adolf, and J. P. Wilcoxon, “ Viscoelasticity near the sol-gel transition,” Phys. Rev. A 39, 13251332 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.1325
20.
20. Martin, J. E. , D. Adolf, and J. P. Wilcoxon, “ Viscoelasticity of near-critical gels,” Phys. Rev. Lett. 61, 26202623 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2620
21.
21. de Gennes, P. G. , “ On a relation between percolation theory and the elasticity of gels,” J. Physique Lett. 37, 12 (1976).
http://dx.doi.org/10.1051/jphyslet:019760037010100
22.
22. Adam, M. , and M. Delsanti, “ Mechanical measurements in the reaction bath during the polycondensation reaction, near the gelation threshold,” Macromolecules 18, 22852290 (1985).
http://dx.doi.org/10.1021/ma00153a041
23.
23. Adolf, D. , and J. E. Martin, “ Time-cure superposition during cross-linking,” Macromolecules 23, 37003704 (1990).
http://dx.doi.org/10.1021/ma00217a026
24.
24. Trompette, J. L. , E. Fabregue, and G. Cassanas, “ Influence of the monomer properties on the rheological behavior of chemically crosslinked hydrogels,” J. Polym. Sci. Part B 35, 25352541 (1997).
http://dx.doi.org/10.1002/(SICI)1099-0488(19971115)35:15<2535::AID-POLB15>3.0.CO;2-6
25.
25. Hill, A. V. , “ The combinations of haemoglobin with oxygen and with carbon monoxide,” Biochem. J. 7, 471480 (1913).
http://dx.doi.org/10.1042/bj0070471
26.
26. Giraldo, J. , N. M. Vivas, E. Vila, and A. Badia, “ Assessing the (a)symmetry of concentration-effect curves: Empirical versus mechanistic models,” Pharmacol. Ther. 95, 2145 (2002).
http://dx.doi.org/10.1016/S0163-7258(02)00223-1
27.
27. Mours, M. , and H. H. Winter, “ Relaxation patterns of nearly critical gels,” Macromolecules 29, 72217229 (1996).
http://dx.doi.org/10.1021/ma9517097
28.
28. Winter, H. H. , and M. Mours, “ Rheology of polymers near liquid-solid transitions,” Adv. Polym. Sci. 134, 165234 (1997).
http://dx.doi.org/10.1007/3-540-68449-2_3
29.
29. Haraguchi, K. , “ Nanocomposite hydrogels,” Curr. Opin. Solid State Mater. 11, 4754 (2007).
http://dx.doi.org/10.1016/j.cossms.2008.05.001
http://aip.metastore.ingenta.com/content/sor/journal/jor2/60/4/10.1122/1.4948428
Loading
/content/sor/journal/jor2/60/4/10.1122/1.4948428
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/sor/journal/jor2/60/4/10.1122/1.4948428
2016-05-06
2016-12-06

Abstract

Polyacrylamide (PA) hydrogels have been studied extensively, but fundamental aspects of their gelation kinetics, percolation dynamics, and viscoelasticity are still not well understood. This paper focuses on the rheology of PA hydrogels having unusually low monomer concentrations ( ≈ 3 w% equivalent to 0.42 mol l−1). These furnish loss tangents that span 4 orders of magnitude when varying the crosslinker concentration. An optimum crosslinker concentration (/ ≈ 2.5 mol. % equivalent to 5.3 w%) is identified, below which the storage modulus increases almost linearly, and the loss modulus acquires a local maximum. Above the optimum crosslinker concentration, and both plateau, accompanied by a notable decrease in the maximum strain (increase in brittleness) before breaking. The dynamic shear moduli reveal universal dynamics at the gel point, as indicated by (i) scaling exponents ( = 3.1 ± 0.1,  = 2.1 ± 0.1 and Δ = 0.70 ± 0.02) that are consistent with the de Gennes [“On a relation between percolationtheory and the elasticity of gels,” J. Phys. Lett. , L1–L2 (1976)] electrical network analogy, and (ii) a critical relaxation exponent that is close to the Rouse limit Δ = 2/3 from the scaling theory of Martin. A close correspondence of the exponents with that of Adam and Delsanti [Macromolecules , 2285–2290 (1985)] for the radical copolymerization of a different material supports the long-standing hypothesis that dynamics at the gel point are universal for a prescribed gelation mechanism.

Loading

Full text loading...

/deliver/fulltext/sor/journal/jor2/60/4/1.4948428.html;jsessionid=SJtnkwcWqcl0MF5aKW4EOSjv.x-aip-live-02?itemId=/content/sor/journal/jor2/60/4/10.1122/1.4948428&mimeType=html&fmt=ahah&containerItemId=content/sor/journal/jor2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=journalofrheology.org/60/4/10.1122/1.4948428&pageURL=http://scitation.aip.org/content/sor/journal/jor2/60/4/10.1122/1.4948428'
Right1,Right2,Right3,