Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Pusey, P. N. , and W. van Megen, “ Phase behaviour of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340342 (1986).
Pusey, P. N. , and W. van Megen, “ Observation of a glass transition in suspensions of spherical colloidal particles,” Phys. Rev. Lett. 59, 20832086 (1987).
Brambilla, G. , D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “ Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett. 102, 085703 (2009).
Pusey, P. N. , E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K. Poon, and M. E. Cates, “ Hard spheres: Crystallization and glass formation,” Philos. Trans. R. Soc. A 367, 49935011 (2009).
Weeks, E. R. , J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “ Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627631 (2000).
van Megen, W. , T. C. Mortensen, S. R. Williams, and J. Muller, “ Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition,” Phys. Rev. E 58, 60736085 (1998).
van Megen, W. , and S. M. Underwood, “ Glass-transition in colloidal hard-spheres—Mode-coupling theory analysis,” Phys. Rev. Lett. 70, 27662769 (1993).
Kobelev, V. , and K. S. Schweizer, “ Strain softening, yielding and shear thinning in glassy colloidal suspensions,” Phys. Rev. E 71, 021401 (2005).
Fuchs, M. , and M. Ballauff, “ Flow curves of dense colloidal dispersions: Schematic model analysis of the shear-dependent viscosity near the colloidal glass transition,” J. Chem. Phys. 122, 094707 (2005).
Siebenburger, M. , M. Fuchs, H. H. Winter, and M. Ballauff, “ Viscoelasticity and shear flow of concentrated, noncrystallizing colloidal suspensions: Comparison with mode-coupling theory,” J. Rheol. 53, 707726 (2009).
Brader, J. M. , M. E. Cates, and M. Fuchs, “ First-principles constitutive equation for suspension rheology,” Phys. Rev. Lett. 101, 138301 (2008).
Brader, J. M. , T. Voigtmann, M. Fuchs, R. G. Larson, and M. E. Cates, “ Glass rheology: From mode-coupling theory to a dynamical yield criterion,” Proc. Natl. Acad. Sci. U.S.A. 106, 1518615191 (2009).
Koumakis, N. , A. B. Schofield, and G. Petekidis, “ Effects of shear induced crystallization on the rheology and ageing of hard sphere glasses,” Soft Matter 4, 20082018 (2008).
Mason, T. G. , and D. A. Weitz, “ Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition,” Phys. Rev. Lett. 75, 27702773 (1995).
Petekidis, G. , D. Vlassopoulos, and P. N. Pusey, “ Yielding and flow of colloidal glasses,” Faraday Discuss. 123, 287302 (2003).
Petekidis, G. , D. Vlassopoulos, and P. N. Pusey, “ Yielding and flow of sheared colloidal glasses,” J. Phys. Condens. Matter 16, S3955S3963 (2004).
Crassous, J. J. , M. Siebenbürger, M. Ballauff, M. Drechsler, D. Hajnal, O. Henrich, and M. Fuchs, “ Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow,” J. Chem. Phys. 128, 204902 (2008).
Pham, K. N. , G. Petekidis, D. Vlassopoulos, S. U. Egelhaaf, P. N. Pusey, and W. C. K. Poon, “ Yielding of colloidal glasses,” Europhys. Lett. 75, 624630 (2006).
Pham, K. N. , G. Petekidis, D. Vlassopoulos, S. U. Egelhaaf, W. C. K. Poon, and P. N. Pusey, “ Yielding behavior of repulsion- and attraction-dominated colloidal glasses,” J. Rheol. 52, 649676 (2008).
Varnik, F. , L. Bocquet, and J. L. Barrat, “ A study of the static yield stress in a binary Lennard-Jones glass,” J. Chem. Phys. 120, 27882801 (2004).
Varnik, F. , “ Structural relaxation and rheological response of a driven amorphous system,” J. Chem. Phys. 125, 164514 (2006).
Brady, J. F. , “ The rheological behavior of concentrated colloidal dispersions,” J. Chem. Phys. 99, 567581 (1993).
Sollich, P. , “ Rheological constitutive equation for a model of soft glassy materials,” Phys. Rev. E 58, 738759 (1998).
Ballesta, P. , G. Petekidis, L. Isa, W. C. K. Poon, and R. Besseling, “ Wall slip and flow of concentrated hard-sphere colloidal suspensions,” J. Rheol. 56, 10051037 (2012).
Besseling, R. , L. Isa, P. Ballesta, G. Petekidis, M. E. Cates, and W. C. K. Poon, “ Shear banding and flow-concentration coupling in colloidal glasses,” Phys. Rev. Lett. 105, 268301 (2010).
Chikkadi, V. , D. M. Miedema, M. T. Dang, B. Nienhuis, and P. Schall, “ Shear banding of colloidal glasses: Observation of a dynamic first-order transition,” Phys. Rev. Lett. 113, 208301 (2014).
Osaki, K. , T. Inoue, and T. Isomura, “ Stress overshoot of polymer solutions at high rates of shear,” J. Polym. Sci., Part B: Polym. Phys. 38, 19171925 (2000).<1917::AID-POLB100>3.0.CO;2-6
Islam, M. T. , and L. A. Archer, “ Nonlinear rheology of highly entangled polymer solutions in start-up and steady shear flow,” J. Polym. Sci., Part B: Polym. Phys. 39, 22752289 (2001).
Ravindranath, S. , and S. Q. Wang, “ Universal scaling characteristics of stress overshoot in startup shear of entangled polymer solutions,” J. Rheol. 52, 681695 (2008).
Padding, J. T. , E. S. Boek, and W. J. Briels, “ Dynamics and rheology of wormlike micelles emerging from particulate computer simulations,” J. Chem. Phys. 129, 074903 (2008).
Letwimolnun, W. , B. Vergnes, G. Ausias, and P. J. Carreau, “ Stress overshoots of organoclay nanocomposites in transient shear flow,” J. Non-Newtonian Fluid Mech. 141, 167179 (2007).
Akcora, P. , H. Liu, S. K. Kumar, J. Moll, Y. Li, B. C. Benicewicz, L. S. Schadler, D. Acehan, A. Z. Panagiotopoulos, V. Pryamitsyn, V. Ganesan, J. Ilavsky, P. Thiyagarajan, R. H. Colby, and J. F. Douglas, “ Anisotropic self-assembly of spherical polymer-grafted nanoparticles,” Nat. Mater. 8, 354359 (2009).
Mohraz, A. , and M. J. Solomon, “ Orientation and rupture of fractal colloidal gels during start-up of steady shear flow,” J. Rheol. 49, 657681 (2005).
Laurati, M. , S. U. Egelhaaf, and G. Petekidis, “ Nonlinear rheology of colloidal gels with intermediate volume fraction,” J. Rheol. 55, 673706 (2011).
Koumakis, N. , and G. Petekidis, “ Two step yielding in attractive colloids: Transition from gels to attractive glasses,” Soft Matter 7, 24562470 (2011).
Carrier, V. , and G. Petekidis, “ Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles,” J. Rheol. 53, 245273 (2009).
Derec, C. , G. Ducouret, A. Ajdari, and F. Lequeux, “ Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles,” Phys. Rev. E 67, 061403 (2003).
Koumakis, N. , A. Pamvouxoglou, A. S. Poulos, and G. Petekidis, “ Direct comparison of the rheology of model hard and soft particle glasses,” Soft Matter 8, 42714284 (2012).
Priya, M. , and T. Voigtmann, “ Nonlinear rheology of dense colloidal systems with short-ranged attraction: A mode-coupling theory analysis,” J. Rheol. 58, 11631187 (2014).
Amann, C. P. , and M. Fuchs, “ Transient stress evolution in repulsion and attraction dominated glasses,” J. Rheol. 58, 11911217 (2014).
Amann, C. P. , D. Denisov, M. T. Dang, B. Struth, P. Schall, and M. Fuchs, “ Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory,” J. Chem. Phys. 143, 034505 (2015).
Laurati, M. , K. J. Mutch, N. Koumakis, J. Zausch, C. P. Amann, A. B. Schofield, G. Petekidis, J. F. Brady, J. Horbach, M. Fuchs, and S. U. Egelhaaf, “ Transient dynamics in dense colloidal suspensions under shear: Shear rate dependence,” J. Phys.: Condens. Matter 24, 464104 (2012).
Mutch, K. J. , M. Laurati, C. P. Amann, M. Fuchs, and S. U. Egelhaaf, “ Time-dependent flow in arrested states—Transient behaviour,” Eur. Phys. J.: Spec. Top. 222, 28032817 (2013).
Amann, C. M. , M. Siebenbürger, M. Ballauff, and M. Fuchs, “ Nonlinear rheology of glass-forming colloidal dispersions: Transient stress–strain relations from anisotropic mode coupling theory and thermosensitive microgels,” J. Phys.: Condens. Matter 27, 194121 (2015).
Rottler, J. , and M. O. Robbins, “ Shear yielding of amorphous glassy solids: Effect of temperature and strain rate,” Phys. Rev. E 68, 011507 (2003).
Zausch, J. , J. Horbach, M. Laurati, S. U. Egelhaaf, J. M. Brader, T. Voigtmann, and M. Fuchs, “ From equilibrium to steady state: The transient dynamics of colloidal liquids under shear,” J. Phys.: Condens. Matter 20, 404210 (2008).
Besseling, R. , E. R. Weeks, A. B. Schofield, and W. C. K. Poon, “ Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99, 028301 (2007).
Eisenmann, C. , C. Kim, J. Mattsson, and D. A. Weitz, “ Shear melting of a colloidal glass,” Phys. Rev. Lett. 104, 035502 (2010).
Koumakis, N. , M. Laurati, S. U. Egelhaaf, J. F. Brady, and G. Petekidis, “ Yielding of hard-sphere glasses during start-up shear,” Phys. Rev. Lett. 108, 098303 (2012).
Krüger, M. , F. Weysser, and M. Fuchs, “ Tagged-particle motion in glassy systems under shear: Comparison of mode coupling theory and Brownian dynamics simulations,” Eur. Phys. J. E 34, 122 (2011).
Schall, P. , D. A. Weitz, and F. Spaepen, “ Structural rearrangements that govern flow in colloidal glasses,” Science 318, 18951899 (2007).
Chen, D. , D. Semwogerere, J. Sato, V. Breedveld, and E. R. Weeks, “ Microscopic structural relaxation in a sheared supercooled colloidal liquid,” Phys. Rev. E 81, 011403 (2010).
Sentjabrskaja, T. , P. Chaudhuri, M. Hermes, W. C. K. Poon, J. Horbach, S. U. Egelhaaf, and M. Laurati, “ Creep and flow of glasses: Strain response linked to the spatial distribution of dynamical heterogeneities,” Sci. Rep. 5, 11884 (2015).
Tsamados, M. , “ Plasticity and dynamical heterogeneity in driven glassy materials,” The Eur. Phys. J. E: Soft Matter Biol. Phys. 32, 165181 (2010).
Martens, K. , L. R. Bocquet, and J.-L. Barrat, “ Connecting diffusion and dynamical heterogeneities in actively deformed amorphous systems,” Phys. Rev. Lett. 106, 156001 (2011).
Brader, J. M. , “ Nonlinear rheology of colloidal dispersions,” J. Phys.: Condens. Matter 22, 363101 (2010).
Bryant, G. , S. R. Williams, L. Qian, I. K. Snook, E. Perez, and F. Pincet, “ How hard is a colloidal ‘hard-sphere’ interaction?,” Phys. Rev. E 66, 060501 (2002).
Schaertl, W. , and H. Sillescu, “ Brownian dynamics of polydisperse colloidal hard spheres: Equilibrium structures and random close packings,” J. Stat. Phys. 77, 10071025 (1994).
Poon, W. C. K. , E. R. Weeks, and C. P. Royall, “ On measuring colloidal volume fractions,” Soft Matter 8, 2130 (2012).
Petekidis, G. , P. N. Pusey, A. Moussaid, S. U. Egelhaaf, and W. C. K. Poon, “ Shear-induced yielding and ordering in concentrated particle suspensions,” Physica A 306, 334342 (2002).
Smith, P. A. , G. Petekidis, S. U. Egelhaaf, and W. C. K. Poon, “ Yielding and crystallization of colloidal gels under oscillatory shear,” Phys. Rev. E 76, 041402 (2007).
Ballesta, P. , R. Besseling, L. Isa, G. Petekidis, and W. C. K. Poon, “ Slip and flow of hard-sphere colloidal glasses,” Phys. Rev. Lett. 101, 258301 (2008).
Crocker, J. C. , and D. G. Grier, “ Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298310 (1996).
Jenkins, M. C. , and S. U. Egelhaaf, “ Confocal microscopy of colloidal particles: Towards reliable, optimum coordinates,” Adv. Colloid Interface Sci. 136, 6592 (2008).
Besseling, R. , L. Isa, E. R. Weeks, and W. C. K. Poon, “ Quantitative imaging of colloidal flows,” Adv. Colloid Interface Sci. 146, 117 (2009).
Foss, D. R. , and J. F. Brady, “ Self-diffusion in sheared suspensions by dynamic simulation,” J. Fluid Mech. 401, 243274 (1999).
Heyes, D. M. , and J. R. Melrose, “ Brownian dynamics simulations of model hard-sphere suspensions,” J. Non-Newtonian Fluid Mech. 46, 128 (1993).
Foss, D. R. , and J. F. Brady, “ Brownian dynamics simulation of hard-sphere colloidal dispersions,” J. Rheol. 44, 629651 (2000).
Brady, J. F. , “ Computer simulation of viscous suspensions,” Chem. Eng. Sci. 56, 29212926 (2001).
Taylor, G. , “ Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion,” Proc. R. Soc. London A 225, 473477 (1954).
Sierou, A. , and J. F. Brady, “ Accelerated Stokesian dynamics simulations,” J. Fluid Mech. 448, 115146 (2001).
Koumakis, N. , “ A study on the effects of interparticle interactions on the dynamics, rheology and aging of colloidal systems out of equilibrium,” Ph.D. thesis, University of Crete, Heraklion, Greece, 2011.
Foss, D. R. , and J. F. Brady, “ Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation,” J. Fluid Mech. 407, 167200 (2000).
Sentjabrskaja, T. , M. Hermes, W. C. K. Poon, C. D. Estrada, R. Castaneda-Priego, S. U. Egelhaaf, and M. Laurati, “ Transient dynamics during stress overshoots in binary colloidal glasses,” Soft Matter 10, 65466555 (2014).
Amann, C. P. , M. Siebenburger, M. Kruger, F. Weysser, M. Ballauff, and M. Fuchs, “ Overshoots in stress-strain curves: Colloid experiments and schematic mode coupling theory,” J. Rheol. 57, 149175 (2013).
Batchelor, G. K. , “ The effect of Brownian motion on the bulk stress in a suspension of spherical particles,” J. Fluid Mech. 83, 97117 (1977).
Bhattacharjee, A. K. , “ Stress-structure relation in dense colloidal melts under forward and instantaneous reversal of the shear,” Soft Matter 11, 56975704 (2015).
Jacob, A. R. , A. S. Poulos, S. Kim, J. Vermant, and G. Petekidis, “ Convective cage release in model colloidal glasses,” Phys. Rev. Lett. 115, 218301 (2015).
Weeks, E. R. , J. C. Crocker, and D. A. Weitz, “ Short and long-range correlated motion observed in colloidal glasses and liquids,” J. Phys.: Condens. Matter 19, 205131 (2007).
Evers, F. , R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “ Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J.: Spec. Top. 222, 29953009 (2013).
Dalle-Ferrier, C. , M. Kruger, R. D. L. Hanes, S. Walta, M. C. Jenkins, and S. U. Egelhaaf, “ Dynamics of dilute colloidal suspensions in modulated potentials,” Soft Matter 7, 20642075 (2011).
Lacks, D. J. , and M. J. Osborne, “ Energy landscape picture of overaging and rejuvenation in a sheared glass,” Phys. Rev. Lett. 93, 255501 (2004).
Viasnoff, V. , and F. Lequeux, “ Rejuvenation and overaging in a colloidal glass under shear,” Phys. Rev. Lett. 89, 065701 (2002).
Ballauff, M. , J. M. Brader, S. U. Egelhaaf, M. Fuchs, J. Horbach, N. Koumakis, M. Krüger, M. Laurati, K. J. Mutch, G. Petekidis, M. Siebenbürger, T. Voigtmann, and J. Zausch, “ Residual stresses in glasses,” Phys. Rev. Lett. 110, 215701 (2013).

Data & Media loading...


Article metrics loading...



The transient response of model hard sphere glasses is examined during the application of steady rate start-up shear using Brownian dynamics simulations, experimental rheology and confocal microscopy. With increasing strain, the glass initially exhibits an almost linear elastic stress increase, a stress peak at the yield point and then reaches a constant steady state. The stress overshoot has a nonmonotonic dependence with Peclet number, Pe, and volume fraction, φ, determined by the available free volume and a competition between structural relaxation and shear advection. Examination of the structural properties under shear revealed an increasing anisotropic radial distribution function, g(r), mostly in the velocity-gradient (xy) plane, which decreases after the stress peak with considerable anisotropy remaining in the steady-state. Low rates minimally distort the structure, while high rates show distortion with signatures of transient elongation. As a mechanism of storing energy, particles are trapped within a cage distorted more than Brownian relaxation allows, while at larger strains, stresses are relaxed as particles are forced out of the cage due to advection. Even in the steady state, intermediate super diffusion is observed at high rates and is a signature of the continuous breaking and reformation of cages under shear.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd