Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/sor/journal/jor2/60/4/10.1122/1.4949340
1.
Pusey, P. N. , and W. van Megen, “ Phase behaviour of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340342 (1986).
http://dx.doi.org/10.1038/320340a0
2.
Pusey, P. N. , and W. van Megen, “ Observation of a glass transition in suspensions of spherical colloidal particles,” Phys. Rev. Lett. 59, 20832086 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2083
3.
Brambilla, G. , D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “ Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett. 102, 085703 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.085703
4.
Pusey, P. N. , E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K. Poon, and M. E. Cates, “ Hard spheres: Crystallization and glass formation,” Philos. Trans. R. Soc. A 367, 49935011 (2009).
http://dx.doi.org/10.1098/rsta.2009.0181
5.
Weeks, E. R. , J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “ Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627631 (2000).
http://dx.doi.org/10.1126/science.287.5453.627
6.
van Megen, W. , T. C. Mortensen, S. R. Williams, and J. Muller, “ Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition,” Phys. Rev. E 58, 60736085 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.6073
7.
van Megen, W. , and S. M. Underwood, “ Glass-transition in colloidal hard-spheres—Mode-coupling theory analysis,” Phys. Rev. Lett. 70, 27662769 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.2766
8.
Kobelev, V. , and K. S. Schweizer, “ Strain softening, yielding and shear thinning in glassy colloidal suspensions,” Phys. Rev. E 71, 021401 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.021401
9.
Fuchs, M. , and M. Ballauff, “ Flow curves of dense colloidal dispersions: Schematic model analysis of the shear-dependent viscosity near the colloidal glass transition,” J. Chem. Phys. 122, 094707 (2005).
http://dx.doi.org/10.1063/1.1859285
10.
Siebenburger, M. , M. Fuchs, H. H. Winter, and M. Ballauff, “ Viscoelasticity and shear flow of concentrated, noncrystallizing colloidal suspensions: Comparison with mode-coupling theory,” J. Rheol. 53, 707726 (2009).
http://dx.doi.org/10.1122/1.3093088
11.
Brader, J. M. , M. E. Cates, and M. Fuchs, “ First-principles constitutive equation for suspension rheology,” Phys. Rev. Lett. 101, 138301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.138301
12.
Brader, J. M. , T. Voigtmann, M. Fuchs, R. G. Larson, and M. E. Cates, “ Glass rheology: From mode-coupling theory to a dynamical yield criterion,” Proc. Natl. Acad. Sci. U.S.A. 106, 1518615191 (2009).
http://dx.doi.org/10.1073/pnas.0905330106
13.
Koumakis, N. , A. B. Schofield, and G. Petekidis, “ Effects of shear induced crystallization on the rheology and ageing of hard sphere glasses,” Soft Matter 4, 20082018 (2008).
http://dx.doi.org/10.1039/b805171b
14.
Mason, T. G. , and D. A. Weitz, “ Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition,” Phys. Rev. Lett. 75, 27702773 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.2770
15.
Petekidis, G. , D. Vlassopoulos, and P. N. Pusey, “ Yielding and flow of colloidal glasses,” Faraday Discuss. 123, 287302 (2003).
http://dx.doi.org/10.1039/b207343a
16.
Petekidis, G. , D. Vlassopoulos, and P. N. Pusey, “ Yielding and flow of sheared colloidal glasses,” J. Phys. Condens. Matter 16, S3955S3963 (2004).
http://dx.doi.org/10.1088/0953-8984/16/38/013
17.
Crassous, J. J. , M. Siebenbürger, M. Ballauff, M. Drechsler, D. Hajnal, O. Henrich, and M. Fuchs, “ Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow,” J. Chem. Phys. 128, 204902 (2008).
http://dx.doi.org/10.1063/1.2921801
18.
Pham, K. N. , G. Petekidis, D. Vlassopoulos, S. U. Egelhaaf, P. N. Pusey, and W. C. K. Poon, “ Yielding of colloidal glasses,” Europhys. Lett. 75, 624630 (2006).
http://dx.doi.org/10.1209/epl/i2006-10156-y
19.
Pham, K. N. , G. Petekidis, D. Vlassopoulos, S. U. Egelhaaf, W. C. K. Poon, and P. N. Pusey, “ Yielding behavior of repulsion- and attraction-dominated colloidal glasses,” J. Rheol. 52, 649676 (2008).
http://dx.doi.org/10.1122/1.2838255
20.
Varnik, F. , L. Bocquet, and J. L. Barrat, “ A study of the static yield stress in a binary Lennard-Jones glass,” J. Chem. Phys. 120, 27882801 (2004).
http://dx.doi.org/10.1063/1.1636451
21.
Varnik, F. , “ Structural relaxation and rheological response of a driven amorphous system,” J. Chem. Phys. 125, 164514 (2006).
http://dx.doi.org/10.1063/1.2363998
22.
Brady, J. F. , “ The rheological behavior of concentrated colloidal dispersions,” J. Chem. Phys. 99, 567581 (1993).
http://dx.doi.org/10.1063/1.465782
23.
Sollich, P. , “ Rheological constitutive equation for a model of soft glassy materials,” Phys. Rev. E 58, 738759 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.738
24.
Ballesta, P. , G. Petekidis, L. Isa, W. C. K. Poon, and R. Besseling, “ Wall slip and flow of concentrated hard-sphere colloidal suspensions,” J. Rheol. 56, 10051037 (2012).
http://dx.doi.org/10.1122/1.4719775
25.
Besseling, R. , L. Isa, P. Ballesta, G. Petekidis, M. E. Cates, and W. C. K. Poon, “ Shear banding and flow-concentration coupling in colloidal glasses,” Phys. Rev. Lett. 105, 268301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.268301
26.
Chikkadi, V. , D. M. Miedema, M. T. Dang, B. Nienhuis, and P. Schall, “ Shear banding of colloidal glasses: Observation of a dynamic first-order transition,” Phys. Rev. Lett. 113, 208301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.208301
27.
Osaki, K. , T. Inoue, and T. Isomura, “ Stress overshoot of polymer solutions at high rates of shear,” J. Polym. Sci., Part B: Polym. Phys. 38, 19171925 (2000).
http://dx.doi.org/10.1002/1099-0488(20000715)38:14<1917::AID-POLB100>3.0.CO;2-6
28.
Islam, M. T. , and L. A. Archer, “ Nonlinear rheology of highly entangled polymer solutions in start-up and steady shear flow,” J. Polym. Sci., Part B: Polym. Phys. 39, 22752289 (2001).
http://dx.doi.org/10.1002/polb.1201
29.
Ravindranath, S. , and S. Q. Wang, “ Universal scaling characteristics of stress overshoot in startup shear of entangled polymer solutions,” J. Rheol. 52, 681695 (2008).
http://dx.doi.org/10.1122/1.2899147
30.
Padding, J. T. , E. S. Boek, and W. J. Briels, “ Dynamics and rheology of wormlike micelles emerging from particulate computer simulations,” J. Chem. Phys. 129, 074903 (2008).
http://dx.doi.org/10.1063/1.2970934
31.
Letwimolnun, W. , B. Vergnes, G. Ausias, and P. J. Carreau, “ Stress overshoots of organoclay nanocomposites in transient shear flow,” J. Non-Newtonian Fluid Mech. 141, 167179 (2007).
http://dx.doi.org/10.1016/j.jnnfm.2006.11.003
32.
Akcora, P. , H. Liu, S. K. Kumar, J. Moll, Y. Li, B. C. Benicewicz, L. S. Schadler, D. Acehan, A. Z. Panagiotopoulos, V. Pryamitsyn, V. Ganesan, J. Ilavsky, P. Thiyagarajan, R. H. Colby, and J. F. Douglas, “ Anisotropic self-assembly of spherical polymer-grafted nanoparticles,” Nat. Mater. 8, 354359 (2009).
http://dx.doi.org/10.1038/nmat2404
33.
Mohraz, A. , and M. J. Solomon, “ Orientation and rupture of fractal colloidal gels during start-up of steady shear flow,” J. Rheol. 49, 657681 (2005).
http://dx.doi.org/10.1122/1.1895799
34.
Laurati, M. , S. U. Egelhaaf, and G. Petekidis, “ Nonlinear rheology of colloidal gels with intermediate volume fraction,” J. Rheol. 55, 673706 (2011).
http://dx.doi.org/10.1122/1.3571554
35.
Koumakis, N. , and G. Petekidis, “ Two step yielding in attractive colloids: Transition from gels to attractive glasses,” Soft Matter 7, 24562470 (2011).
http://dx.doi.org/10.1039/c0sm00957a
36.
Carrier, V. , and G. Petekidis, “ Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles,” J. Rheol. 53, 245273 (2009).
http://dx.doi.org/10.1122/1.3045803
37.
Derec, C. , G. Ducouret, A. Ajdari, and F. Lequeux, “ Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles,” Phys. Rev. E 67, 061403 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.061403
38.
Koumakis, N. , A. Pamvouxoglou, A. S. Poulos, and G. Petekidis, “ Direct comparison of the rheology of model hard and soft particle glasses,” Soft Matter 8, 42714284 (2012).
http://dx.doi.org/10.1039/c2sm07113d
39.
Priya, M. , and T. Voigtmann, “ Nonlinear rheology of dense colloidal systems with short-ranged attraction: A mode-coupling theory analysis,” J. Rheol. 58, 11631187 (2014).
http://dx.doi.org/10.1122/1.4871474
40.
Amann, C. P. , and M. Fuchs, “ Transient stress evolution in repulsion and attraction dominated glasses,” J. Rheol. 58, 11911217 (2014).
http://dx.doi.org/10.1122/1.4881256
41.
Amann, C. P. , D. Denisov, M. T. Dang, B. Struth, P. Schall, and M. Fuchs, “ Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory,” J. Chem. Phys. 143, 034505 (2015).
http://dx.doi.org/10.1063/1.4926932
42.
Laurati, M. , K. J. Mutch, N. Koumakis, J. Zausch, C. P. Amann, A. B. Schofield, G. Petekidis, J. F. Brady, J. Horbach, M. Fuchs, and S. U. Egelhaaf, “ Transient dynamics in dense colloidal suspensions under shear: Shear rate dependence,” J. Phys.: Condens. Matter 24, 464104 (2012).
http://dx.doi.org/10.1088/0953-8984/24/46/464104
43.
Mutch, K. J. , M. Laurati, C. P. Amann, M. Fuchs, and S. U. Egelhaaf, “ Time-dependent flow in arrested states—Transient behaviour,” Eur. Phys. J.: Spec. Top. 222, 28032817 (2013).
http://dx.doi.org/10.1140/epjst/e2013-02059-x
44.
Amann, C. M. , M. Siebenbürger, M. Ballauff, and M. Fuchs, “ Nonlinear rheology of glass-forming colloidal dispersions: Transient stress–strain relations from anisotropic mode coupling theory and thermosensitive microgels,” J. Phys.: Condens. Matter 27, 194121 (2015).
http://dx.doi.org/10.1088/0953-8984/27/19/194121
45.
Rottler, J. , and M. O. Robbins, “ Shear yielding of amorphous glassy solids: Effect of temperature and strain rate,” Phys. Rev. E 68, 011507 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.011507
46.
Zausch, J. , J. Horbach, M. Laurati, S. U. Egelhaaf, J. M. Brader, T. Voigtmann, and M. Fuchs, “ From equilibrium to steady state: The transient dynamics of colloidal liquids under shear,” J. Phys.: Condens. Matter 20, 404210 (2008).
http://dx.doi.org/10.1088/0953-8984/20/40/404210
47.
Besseling, R. , E. R. Weeks, A. B. Schofield, and W. C. K. Poon, “ Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99, 028301 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.028301
48.
Eisenmann, C. , C. Kim, J. Mattsson, and D. A. Weitz, “ Shear melting of a colloidal glass,” Phys. Rev. Lett. 104, 035502 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.035502
49.
Koumakis, N. , M. Laurati, S. U. Egelhaaf, J. F. Brady, and G. Petekidis, “ Yielding of hard-sphere glasses during start-up shear,” Phys. Rev. Lett. 108, 098303 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.098303
50.
Krüger, M. , F. Weysser, and M. Fuchs, “ Tagged-particle motion in glassy systems under shear: Comparison of mode coupling theory and Brownian dynamics simulations,” Eur. Phys. J. E 34, 122 (2011).
http://dx.doi.org/10.1140/epje/i2011-11088-5
51.
Schall, P. , D. A. Weitz, and F. Spaepen, “ Structural rearrangements that govern flow in colloidal glasses,” Science 318, 18951899 (2007).
http://dx.doi.org/10.1126/science.1149308
52.
Chen, D. , D. Semwogerere, J. Sato, V. Breedveld, and E. R. Weeks, “ Microscopic structural relaxation in a sheared supercooled colloidal liquid,” Phys. Rev. E 81, 011403 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.011403
53.
Sentjabrskaja, T. , P. Chaudhuri, M. Hermes, W. C. K. Poon, J. Horbach, S. U. Egelhaaf, and M. Laurati, “ Creep and flow of glasses: Strain response linked to the spatial distribution of dynamical heterogeneities,” Sci. Rep. 5, 11884 (2015).
http://dx.doi.org/10.1038/srep11884
54.
Tsamados, M. , “ Plasticity and dynamical heterogeneity in driven glassy materials,” The Eur. Phys. J. E: Soft Matter Biol. Phys. 32, 165181 (2010).
http://dx.doi.org/10.1140/epje/i2010-10609-0
55.
Martens, K. , L. R. Bocquet, and J.-L. Barrat, “ Connecting diffusion and dynamical heterogeneities in actively deformed amorphous systems,” Phys. Rev. Lett. 106, 156001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.156001
56.
Brader, J. M. , “ Nonlinear rheology of colloidal dispersions,” J. Phys.: Condens. Matter 22, 363101 (2010).
http://dx.doi.org/10.1088/0953-8984/22/36/363101
57.
Bryant, G. , S. R. Williams, L. Qian, I. K. Snook, E. Perez, and F. Pincet, “ How hard is a colloidal ‘hard-sphere’ interaction?,” Phys. Rev. E 66, 060501 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.060501
58.
Schaertl, W. , and H. Sillescu, “ Brownian dynamics of polydisperse colloidal hard spheres: Equilibrium structures and random close packings,” J. Stat. Phys. 77, 10071025 (1994).
http://dx.doi.org/10.1007/BF02183148
59.
Poon, W. C. K. , E. R. Weeks, and C. P. Royall, “ On measuring colloidal volume fractions,” Soft Matter 8, 2130 (2012).
http://dx.doi.org/10.1039/C1SM06083J
60.
Petekidis, G. , P. N. Pusey, A. Moussaid, S. U. Egelhaaf, and W. C. K. Poon, “ Shear-induced yielding and ordering in concentrated particle suspensions,” Physica A 306, 334342 (2002).
http://dx.doi.org/10.1016/S0378-4371(02)00510-1
61.
Smith, P. A. , G. Petekidis, S. U. Egelhaaf, and W. C. K. Poon, “ Yielding and crystallization of colloidal gels under oscillatory shear,” Phys. Rev. E 76, 041402 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.041402
62.
Ballesta, P. , R. Besseling, L. Isa, G. Petekidis, and W. C. K. Poon, “ Slip and flow of hard-sphere colloidal glasses,” Phys. Rev. Lett. 101, 258301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.258301
63.
Crocker, J. C. , and D. G. Grier, “ Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298310 (1996).
http://dx.doi.org/10.1006/jcis.1996.0217
64.
Jenkins, M. C. , and S. U. Egelhaaf, “ Confocal microscopy of colloidal particles: Towards reliable, optimum coordinates,” Adv. Colloid Interface Sci. 136, 6592 (2008).
http://dx.doi.org/10.1016/j.cis.2007.07.006
65.
Besseling, R. , L. Isa, E. R. Weeks, and W. C. K. Poon, “ Quantitative imaging of colloidal flows,” Adv. Colloid Interface Sci. 146, 117 (2009).
http://dx.doi.org/10.1016/j.cis.2008.09.008
66.
Foss, D. R. , and J. F. Brady, “ Self-diffusion in sheared suspensions by dynamic simulation,” J. Fluid Mech. 401, 243274 (1999).
http://dx.doi.org/10.1017/S0022112099006576
67.
Heyes, D. M. , and J. R. Melrose, “ Brownian dynamics simulations of model hard-sphere suspensions,” J. Non-Newtonian Fluid Mech. 46, 128 (1993).
http://dx.doi.org/10.1016/0377-0257(93)80001-R
68.
Foss, D. R. , and J. F. Brady, “ Brownian dynamics simulation of hard-sphere colloidal dispersions,” J. Rheol. 44, 629651 (2000).
http://dx.doi.org/10.1122/1.551104
69.
Brady, J. F. , “ Computer simulation of viscous suspensions,” Chem. Eng. Sci. 56, 29212926 (2001).
http://dx.doi.org/10.1016/S0009-2509(00)00475-9
70.
Taylor, G. , “ Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion,” Proc. R. Soc. London A 225, 473477 (1954).
http://dx.doi.org/10.1098/rspa.1954.0216
71.
Sierou, A. , and J. F. Brady, “ Accelerated Stokesian dynamics simulations,” J. Fluid Mech. 448, 115146 (2001).
http://dx.doi.org/10.1017/S0022112001005912
72.
Koumakis, N. , “ A study on the effects of interparticle interactions on the dynamics, rheology and aging of colloidal systems out of equilibrium,” Ph.D. thesis, University of Crete, Heraklion, Greece, 2011.
73.
Foss, D. R. , and J. F. Brady, “ Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation,” J. Fluid Mech. 407, 167200 (2000).
http://dx.doi.org/10.1017/S0022112099007557
74.
Sentjabrskaja, T. , M. Hermes, W. C. K. Poon, C. D. Estrada, R. Castaneda-Priego, S. U. Egelhaaf, and M. Laurati, “ Transient dynamics during stress overshoots in binary colloidal glasses,” Soft Matter 10, 65466555 (2014).
http://dx.doi.org/10.1039/C4SM00577E
75.
Amann, C. P. , M. Siebenburger, M. Kruger, F. Weysser, M. Ballauff, and M. Fuchs, “ Overshoots in stress-strain curves: Colloid experiments and schematic mode coupling theory,” J. Rheol. 57, 149175 (2013).
http://dx.doi.org/10.1122/1.4764000
76.
Batchelor, G. K. , “ The effect of Brownian motion on the bulk stress in a suspension of spherical particles,” J. Fluid Mech. 83, 97117 (1977).
http://dx.doi.org/10.1017/S0022112077001062
77.
Bhattacharjee, A. K. , “ Stress-structure relation in dense colloidal melts under forward and instantaneous reversal of the shear,” Soft Matter 11, 56975704 (2015).
http://dx.doi.org/10.1039/C4SM02790F
78.
Jacob, A. R. , A. S. Poulos, S. Kim, J. Vermant, and G. Petekidis, “ Convective cage release in model colloidal glasses,” Phys. Rev. Lett. 115, 218301 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.218301
79.
Weeks, E. R. , J. C. Crocker, and D. A. Weitz, “ Short and long-range correlated motion observed in colloidal glasses and liquids,” J. Phys.: Condens. Matter 19, 205131 (2007).
http://dx.doi.org/10.1088/0953-8984/19/20/205131
80.
Evers, F. , R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “ Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J.: Spec. Top. 222, 29953009 (2013).
http://dx.doi.org/10.1140/epjst/e2013-02071-2
81.
Dalle-Ferrier, C. , M. Kruger, R. D. L. Hanes, S. Walta, M. C. Jenkins, and S. U. Egelhaaf, “ Dynamics of dilute colloidal suspensions in modulated potentials,” Soft Matter 7, 20642075 (2011).
http://dx.doi.org/10.1039/C0SM01051K
82.
Lacks, D. J. , and M. J. Osborne, “ Energy landscape picture of overaging and rejuvenation in a sheared glass,” Phys. Rev. Lett. 93, 255501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.255501
83.
Viasnoff, V. , and F. Lequeux, “ Rejuvenation and overaging in a colloidal glass under shear,” Phys. Rev. Lett. 89, 065701 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.065701
84.
Ballauff, M. , J. M. Brader, S. U. Egelhaaf, M. Fuchs, J. Horbach, N. Koumakis, M. Krüger, M. Laurati, K. J. Mutch, G. Petekidis, M. Siebenbürger, T. Voigtmann, and J. Zausch, “ Residual stresses in glasses,” Phys. Rev. Lett. 110, 215701 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.215701
http://aip.metastore.ingenta.com/content/sor/journal/jor2/60/4/10.1122/1.4949340
Loading
/content/sor/journal/jor2/60/4/10.1122/1.4949340
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/sor/journal/jor2/60/4/10.1122/1.4949340
2016-05-18
2016-12-10

Abstract

The transient response of model hard sphere glasses is examined during the application of steady rate start-up shear using Brownian dynamics simulations, experimental rheology and confocal microscopy. With increasing strain, the glass initially exhibits an almost linear elastic stress increase, a stress peak at the yield point and then reaches a constant steady state. The stress overshoot has a nonmonotonic dependence with Peclet number, Pe, and volume fraction, φ, determined by the available free volume and a competition between structural relaxation and shear advection. Examination of the structural properties under shear revealed an increasing anisotropic radial distribution function, g(r), mostly in the velocity-gradient (xy) plane, which decreases after the stress peak with considerable anisotropy remaining in the steady-state. Low rates minimally distort the structure, while high rates show distortion with signatures of transient elongation. As a mechanism of storing energy, particles are trapped within a cage distorted more than Brownian relaxation allows, while at larger strains, stresses are relaxed as particles are forced out of the cage due to advection. Even in the steady state, intermediate super diffusion is observed at high rates and is a signature of the continuous breaking and reformation of cages under shear.

Loading

Full text loading...

/deliver/fulltext/sor/journal/jor2/60/4/1.4949340.html;jsessionid=Eyeq43oeSlSBcZaLNB_fWWBz.x-aip-live-03?itemId=/content/sor/journal/jor2/60/4/10.1122/1.4949340&mimeType=html&fmt=ahah&containerItemId=content/sor/journal/jor2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=journalofrheology.org/60/4/10.1122/1.4949340&pageURL=http://scitation.aip.org/content/sor/journal/jor2/60/4/10.1122/1.4949340'
Right1,Right2,Right3,