Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/sor/journal/jor2/60/4/10.1122/1.4953443
1.
Ferry, J. D. , Viscoelastic Properties of Polymers, 3rd ed. ( John Wiley & Sons, New York, NY, 1980).
2.
Macosko, C. W. , and R. G. Larson, Rheology: Principles, Measurements, and Applications ( VCH, New York, 1994).
3.
Rubinstein, M. , and R. H. Colby, Polymer Physics ( Oxford University, Oxford, 2003).
4.
McLeish, T. C. B. , “ Tube theory of entangled polymer dynamics,” Adv. Phys. 51, 13791527 (2002).
http://dx.doi.org/10.1080/00018730210153216
5.
Mezger, T. G. , The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers ( Vincentz Network GmbH & Co. KG, Hannover, 2006).
6.
Lathi, B. P. , Linear Systems and Signals, Oxford Series in Electrical and Computer Engineering ( Oxford University, Oxford, 2004).
7.
Tassieri, M. , R. M. L. Evans, R. L. Warren, N. J. Bailey, and J. M. Cooper, “ Microrheology with optical tweezers: Data analysis,” New J. Phys. 14, 115032 (2012).
http://dx.doi.org/10.1088/1367-2630/14/11/115032
8.
Mason, T. G. , and D. A. Weitz, “ Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 12501253 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.1250
9.
Mason, T. G. , “ Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta 39, 371378 (2000).
http://dx.doi.org/10.1007/s003970000094
10.
Dasgupta, B. R. , S. Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, “ Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E 65, 051505 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.051505
11.
Evans, R. M. L. , M. Tassieri, D. Auhl, and T. A. Waigh, “ Direct conversion of rheological compliance measurements into storage and loss moduli,” Phys. Rev. E 80, 012501 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.012501
12.
Evans, R. M. L. , “ Transforming from time to frequency without artefacts,” Br. Soc. Rheol. Bull. 50, 76–86 (2009).
13.
Mours, M. , and H. H. Winter, “ Time-resolved rheometry,” Rheol. Acta 33, 385397 (1994).
http://dx.doi.org/10.1007/BF00366581
14.
Auhl, D. , J. Ramirez, A. E. Likhtman, P. Chambon, and C. Fernyhough, “ Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights,” J. Rheol. 52, 801835 (2008).
http://dx.doi.org/10.1122/1.2890780
15.
Watanabe, H. , S. Ishida, Y. Matsumiya, and T. Inoue, “ Test of full and partial tube dilation pictures in entangled blends of linear polyisoprenes,” Macromolecules 37, 66196631 (2004).
http://dx.doi.org/10.1021/ma0495689
16.
Auhl, D. , P. Chambon, T. C. B. McLeish, and D. J. Read, “ Elongational flow of blends of long and short polymers: Effective stretch relaxation time,” Phys. Rev. Lett. 103, 136001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.136001
17.
Likhtman, A. E. , and T. C. B. McLeish, “ Quantitative theory for linear dynamics of linear entangled polymers,” Macromolecules 35, 63326343 (2002).
http://dx.doi.org/10.1021/ma0200219
18.
Likhtman, A. E. , and R. S. Graham, “ Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation,” J. Non-Newtonian Fluid Mech. 114, 112 (2003).
http://dx.doi.org/10.1016/S0377-0257(03)00114-9
19.
Likhtman, A. E. , “ Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rheology, and diffusion,” Macromolecules 38, 61286139 (2005).
http://dx.doi.org/10.1021/ma050399h
20.
Park, S. J. , and R. G. Larson, “ Tube dilation and reptation in binary blends of monodisperse linear polymers,” Macromolecules 37, 597604 (2004).
http://dx.doi.org/10.1021/ma0343683
21.
Yaoita, T. , T. Isaki, Y. Masubuchi, H. Watanabe, G. Ianniruberto, F. Greco, and G. Marrucci, “ Statics, linear, and nonlinear dynamics of entangled polystyrene melts simulated through the primitive chain network model,” J. Chem. Phys. 128, 154901 (2008).
http://dx.doi.org/10.1063/1.2899653
22.
Read, D. J. , K. Jagannathan, S. K. Sukumaran, and D. Auhl, “ A full-chain constitutive model for bidisperse blends of linear polymers,” J. Rheol. 56, 823873 (2012).
http://dx.doi.org/10.1122/1.4707948
23.
Kapnistos, M. , D. Vlassopoulos, J. Roovers, and L. G. , Leal, “ Linear rheology of architecturally complex macromolecules: Comb polymers with linear backbones,” Macromolecules 38, 78527862 (2005).
http://dx.doi.org/10.1021/ma050644x
24.
Wang, Z. , X. Chen, and R. G. Larson, “ Comparing tube models for predicting the linear rheology of branched polymer melts,” J. Rheol. 54, 223260 (2010).
http://dx.doi.org/10.1122/1.3301246
25.
Kapnistos, M. , M. Lang, D. Vlassopoulos, W. Pyckhout-Hintzen, D. Richter, D. Cho, T. Chang, and M. Rubinstein, “ Unexpected power-law stress relaxation of entangled ring polymers,” Nat. Mater. 7, 9971002 (2008).
http://dx.doi.org/10.1038/nmat2292
26.
de Gennes, P. G. , “ Reptation of a polymer chain in presence of fixed obstacles,” J. Chem. Phys. 55, 572579 (1971).
http://dx.doi.org/10.1063/1.1675789
27.
Doi, M. , and S. F. Edwards, The Theory of Polymer Dynamics ( Oxford University, Oxford, UK, 1988).
28.
Schrag, J. L. , “ Deviation of velocity-gradient profiles from “gap loading” and “surface loading” limits in dynamic simple shear experiments,” Trans. Soc. Rheol. 21, 399413 (1977).
http://dx.doi.org/10.1122/1.549445
29.
Hsieh, H. , and R. P. Quirk, Anionic Polymerization: Principles and Practical Applications ( CRC, 1996).
30.
Morton, M. , Rubber Technology ( Springer Science, Business Media, Netherlands, 2013).
31.
Bayan, G. , SBR thermoplastic elastomer, U.S. patent No. 4,927,882 (1990).
32.
Brydson, J. A. , “ Styrene-Butadiene Rubber,” in Developments in Rubber Technology-2 ( Springer, Netherlands, 1981), pp. 2149.
33.
Kan, M. , T. Okazaki, and T. Sakashita, Tire tread having low rolling resistance, U.S. patent No. 4,444,236 (1984).
34.
Coppola, S. , F. Bacchelli, G. Marrucci, and G. Ianniruberto, “ Rest-time effects in repeated shear-startup runs of branched SBR polymers,” J. Rheol. 58, 18771901 (2014).
http://dx.doi.org/10.1122/1.4896908
35.
Bacchelli, F. , “ Rheological implications of the reduction in viscosity of SBR copolymers during mixing,” Kautsch. Gummi Kunstst. 61, 188191 (2008).
36.
Snijkers, F. , D. Vlassopoulos, G. Ianniruberto, G. Marrucci, H. Lee, J. Yang, and T. Chang, “ Double stress overshoot in start-up of simple shear flow of entangled comb polymers,” Macro Lett. 2, 601604 (2013).
http://dx.doi.org/10.1021/mz400236z
37.
Milner, S. T. , and T. C. B. McLeish, “ Parameter-free theory for stress relaxation in star polymer melts,” Macromolecules 30, 21592166 (1997).
http://dx.doi.org/10.1021/ma961559f
38.
Wood-Adams, P. , and S. Costeux, “ Thermorheological behavior of polyethylene: Effects of microstructure and long chain branching,” Macromolecules 34, 62816290 (2001).
http://dx.doi.org/10.1021/ma0017034
39.
Gauthier, C. , E. Reynaud, R. Vassoille, and L. Ladouce-Stelandre, “ Analysis of the non-linear viscoelastic behaviour of silica filled styrene butadiene rubber,” Polymer 45, 27612771 (2004).
http://dx.doi.org/10.1016/j.polymer.2003.12.081
40.
Zhang, L. Q. , Y. Z. Wang, Y. Q. Wang, Y. Sui, and D. S. Yu, “ Morphology and mechanical properties of clay/styrene-butadiene rubber nanocomposites,” J. Appl. Polym. Sci. 78, 18731878 (2000).
http://dx.doi.org/10.1002/1097-4628(20001209)78:11<1873::AID-APP40>3.0.CO;2-8
41.
Chambon, F. , and H. H. Winter, “ Linear viscoelasticity at the gel point of a cross-linking PDMS with imbalanced stoichiometry,” J. Rheol. 31, 683697 (1987).
http://dx.doi.org/10.1122/1.549955
42.
Hawkins, K. , A. Lawrence, P. R. Williams, and R. L. Williams, “ A study of gelatin gelation by Fourier transform mechanical spectroscopy,” J. Non-Newtonian Fluid Mech. 148, 127133 (2008).
http://dx.doi.org/10.1016/j.jnnfm.2007.05.016
43.
Mours, M. , and H. H. Winter, “ Time resolved rheometry,” in Proceedings of the XIIth International Congress on Rheology (1996), pp. 737738.
44.
Holly, E. E. , S. K. Venkataraman, F. Chambon, and H. H. Winter, “ Fourier-transform mechanical spectroscopy of viscoelastic materials with transient structure,” J. Non-Newtonian Fluid Mech. 27, 1726 (1988).
http://dx.doi.org/10.1016/0377-0257(88)80002-8
45.
Curtis, D. J. , A. Holder, N. Badiei, J. Claypole, M. Walters, B. Thomas, M. Barrow, D. Deganello, M. R. Brown, P. R. Williams, and K. Hawkins, “ Validation of optimal Fourier rheometry for rapidly gelling materials and its application in the study of collagen gelation,” J. Non-Newtonian Fluid Mech. 222, 253259 (2015).
http://dx.doi.org/10.1016/j.jnnfm.2015.01.003
46.
Ghiringhelli, E. , D. Roux, D. Bleses, H. Galliard, and F. Caton, “ Optimal Fourier rheometry,” Rheol. Acta 51, 413420 (2012).
http://dx.doi.org/10.1007/s00397-012-0616-z
47.
Michon, C. , G. Cuvelier, and B. Launay, “ Concentration-dependence of the critical viscoelastic properties of gelatin at the gel point,” Rheol. Acta 32, 94103 (1993).
http://dx.doi.org/10.1007/BF00396681
48.
Chhabra, R. P. , and J. F. Richardson, Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications ( Butterworth-Heinemann, Oxford, 1999).
49.
Yoshimura, A. S. , and R. K. Prudhomme, “ Wall slip effects on dynamic oscillatory measurements,” J. Rheol. 32, 575584 (1988).
http://dx.doi.org/10.1122/1.549982
50.
Larson, R. G. , The Structure and Rheology of Complex Fluids ( Oxford University, New York, 1999), Vol. 33.
51.
Pusey, P. N. , J. P. Hansen, D. Levesque, and J. Zinn-Justin, “ Liquids, freezing and the glass transition, 1991,” Proceedings of the Les Houches Summer School, Course LI, 1989.
52.
Pusey, P. N. , and W. Van Megen, “ Phase-behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340342 (1986).
http://dx.doi.org/10.1038/320340a0
53.
Pusey, P. N. , and W. Van Megen, “ Observation of a glass-transition in suspensions of spherical colloidal particles,” Phys. Rev. Lett. 59, 20832086 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2083
54.
Mason, T. G. , and D. A. Weitz, “ Linear viscoelasticity of colloidal hard-sphere suspensions near the glass-transition,” Phys. Rev. Lett. 75, 27702773 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.2770
55.
Siebenbürger, M. , M. Fuchs, H. H. Winter, and M. Ballauff, “ Viscoelasticity and shear flow of concentrated, noncrystallizing colloidal suspensions: Comparison with mode-coupling theory,” J. Rheol. 53, 707726 (2009).
http://dx.doi.org/10.1122/1.3093088
56.
Brambilla, G. , D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “ Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett. 102, 085703 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.085703
57.
Weeks, E. R. , J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “ Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627631 (2000).
http://dx.doi.org/10.1126/science.287.5453.627
58.
Götze, G. , Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory ( Oxford University, Oxford, 2008), Vol. 143.
59.
Sentjabrskaja, T. , E. Babaliari, J. Hendricks, M. Laurati, G. Petekidis, and S. U. Egelhaaf, “ Yielding of binary colloidal glasses,” Soft Matter 9, 45244533 (2013).
http://dx.doi.org/10.1039/c3sm27903k
60.
Schaertl, W. , and H. Sillescu, “ Brownian dynamics of polydisperse colloidal hard spheres: Equilibrium structures and random close packings,” J. Stat. Phys. 77, 10071025 (1994).
http://dx.doi.org/10.1007/BF02183148
61.
Desmond, K. W. , and E. R. Weeks, “ Influence of particle size distribution on random close packing of spheres,” Phys. Rev. E 90, 022204 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.022204
62.
Santos, A. , S. B. Yuste, M. Lopez de Haro, G. Odriozola, and V. Ogarko, “ Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres,” Phys. Rev. E 89, 040302 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.040302
63.
Pottier, B. , A. Raudsepp, C. Fretigny, F. Lequeux, J.-F. Palierne, and L. Talini, “ High frequency linear rheology of complex fluids measured from their surface thermal fluctuations,” J. Rheol. 57, 441455 (2013).
http://dx.doi.org/10.1122/1.4776745
64.
Tassieri, M. , F. Del Giudice, E. J. Robertson, N. Jain, B. Fries, R. Wilson, A. Glidle, F. Greco, P. A. Netti, P. L. Maffettone, and J. M. Cooper, “ Microrheology with optical tweezers: Measuring the relative viscosity of solutions ‘at a glance,” Sci. Rep. 5, 8831–8837 (2015).
http://dx.doi.org/10.1038/srep08831
65.
Tassieri, M. , R. M. L. Evans, L. Barbu-Tudoran, J. Trinick, and T. A. Waigh, “ The self-assembly, elasticity, and dynamics of cardiac thin filaments,” Biophys. J. 94, 21702178 (2008).
http://dx.doi.org/10.1529/biophysj.107.116087
66.
Tassieri, M. , R. M. L. Evans, L. Barbu-Tudoran, G N. Khaname, J. Trinick, and T. A. Waigh, “ Dynamics of semiflexible polymer solutions in the highly entangled regime,” Phys. Rev. Lett. 101, 198301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.198301
67.
Tassieri, M. , T. A. Waigh, J. Trinick, A. Aggeli, and R. M. L. Evans, “ Analysis of the linear viscoelasticity of polyelectrolytes by magnetic microrheometry-pulsed creep experiments and the one particle response,” J. Rheol. 54, 117131 (2010).
http://dx.doi.org/10.1122/1.3266946
68.
Müeller, K. W. , R. F. Bruinsma, O. Lieleg, A. R. Bausch, W. A. Wall, and A. J. Levine, “ Rheology of semiflexible bundle networks with transient linkers,” Phys. Rev. Lett. 112, 238102 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.238102
69.
Tripathy, S. , and E. J. Berger, “ Measuring viscoelasticity of soft samples using atomic force microscopy,” J. Biomech. Eng. 131, 094507 (2009).
http://dx.doi.org/10.1115/1.3194752
70.
Hine, P. , V. Broome, and I. Ward, “ The incorporation of carbon nanofibres to enhance the properties of self reinforced, single polymer composites,” Polymer 46, 1093610944 (2005).
http://dx.doi.org/10.1016/j.polymer.2005.08.076