Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Olmsted, P. D. , O. Radulescu, and C. Y. D. Lu, “ Johnson–Segalman model with a diffusion term in cylindrical couette flow,” J. Rheol. 44(2), 257275 (2000).
Helgeson, M. E. , P. A. Vasquez, E. W. Kaler, and N. J. Wagner, “ Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition,” J. Rheol. 53(3), 727756 (2009).
Larson, R. G. , “ A constitutive equation for polymer melts based on partially extending strand convection,” J. Rheol. 28(5), 545571 (1984).
Likhtman, A. E. , and R. S. Graham, “ Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–poly equation,” J. Non-Newtonian Fluid Mech. 114(1), 112 (2003).
Zhou, L. , P. A. Vasquez, L. P. Cook, and G. H. McKinley, “ Modeling the inhomogeneous response and formation of shear bands in steady and transient flows of entangled liquids,” J. Rheol. 52(2), 591623 (2008).
Fardin, M. A. , D. Lopez, J. Croso, G. Grégoire, O. Cardoso, G. H. McKinley, and S. Lerouge, “ Elastic turbulence in shear banding wormlike micelles,” Phys. Rev. Lett. 104, 178303 (2010).
Calabrese, M. A. , S. A. Rogers, R. P. Murphy, and N. J. Wagner, “ The rheology and microstructure of branched micelles under shear,” J. Rheol. 59, 12991328 (2015).
Cates, M. E. , “ Reptation of living polymers: Dynamics of entangled polymers in the presence of reversible chain-scission reactions,” Macromolecules 20(9), 22892296 (1987).
Cates, M. E. , and S. J. Candau, “ Statics and dynamics of worm-like surfactant micelles,” J. Phys.: Condens. Matter 2(33), 68696892 (1990).
Spenley, N. A. , M. E. Cates, and T. C. B. McLeish, “ Nonlinear rheology of wormlike micelles,” Phys. Rev. Lett. 71, 939942 (1993).
Berret, J.-F. , “ Transient rheology of wormlike micelles,” Langmuir 13(8), 22272234 (1997).
Lerouge, S. , J.-P. Decruppe, and J.-F. Berret, “ Correlations between rheological and optical properties of a micellar solution under shear banding flow,” Langmuir 16(16), 64646474 (2000).
Fardin, M.-A. , and S. Lerouge, “ Flows of living polymer fluids,” Soft Matter 10, 87898799 (2014).
Zou, W. , and R. G. Larson, “ A mesoscopic simulation method for predicting the rheology of semi-dilute wormlike micellar solutions,” J. Rheol. 58(3), 681721 (2014).
Zou, W. , X. Tang, M. Weaver, P. Koenig, and R. G. Larson, “ Determination of characteristic lengths and times for wormlike micelle solutions from rheology using a mesoscopic simulation method,” J. Rheol. 59(4), 903934 (2015).
Vasquez, P. A. , G. H. McKinley, and L. P. Cook, “ A network scission model for wormlike micellar solutions: I. Model formulation and viscometric flow predictions,” J. Non.-Newtonian Fluid Mech. 144(2–3), 122139 (2007).
Grmela, M. , F. Chinesta, and A. Ammar, “ Mesoscopic tube model of fluids composed of worm-like micelles,” Rheol. Acta 49, 495506 (2010).
Germann, N. , L. P. Cook, and A. N. Beris, “ Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions,” J. Non-Newtonian Fluid Mech. 196, 5157 (2013).
Germann, N. , L. P. Cook, and A. N. Beris, “ Investigation of the inhomogeneous shear flow of a wormlike micellar solution using a thermodynamically consistent model,” J. Non-Newtonian Fluid Mech. 207, 2131 (2014).
Germann, N. , L. P. Cook, and A. N. Beris, “ A differential velocities-based study of diffusion effects in shear-banding micellar solutions,” J. Non-Newtonian Fluid Mech. 232, 4354 (2016).
Giesekus, H. , “ A simple constitutive equation for polymer fluids based on the concept of the deformation dependent tensorial mobility,” J. Non-Newtonian Fluid Mech. 11(1–2), 69109 (1982).
Fischer, P. , and H. Rehage, “ Non-linear flow properties of viscoelastic surfactant solutions,” Rheol. Acta 36(1), 1327 (1997).
Helgeson, M. E. , M. D. Reichert, Y. T. Hu, and N. J. Wagner, “ Relating shear banding, structure, and phase behavior in wormlike micellar solutions,” Soft Matter 5(20), 38583869 (2009).
Liberatore, M. W. , F. Nettesheim, P. A. Vasquez, M. E. Helgeson, N. J. Wagner, E. W. Kaler, L. P. Cook, L. Porcar, and Y. T. Hu, “ Microstructure and shear rheology of entangled wormlike micelles in solution,” J. Rheol. 53(2), 441458 (2009).
Prud'homme, R. K. , and G. G. Warr, “ Elongational flow of solutions of rodlike micelles,” Langmuir 10(10), 34193426 (1994).
Walker, L. M. , P. Moldenaers, and J.-F. Berret, “ Macroscopic response of wormlike micelles to elongational flow,” Langmuir 12(26), 63096314 (1996).
Beris, A. N. , and B. J. Edwards, Thermodynamics of Flowing Systems ( Oxford University, New York, 1994).
Gurnon, A. K. , C. Lopez-Barron, M. J. Wasbrough, L. Porcar, and N. J. Wagner, “ Spatially resolved concentration and segmental flow alignment in a shear-banding solution of polymer-like micelles,” ACS Macro Lett. 3(3), 276280 (2014).
Gurnon, A. K. , C. R. Lopez-Barron, A. P. R. Eberle, L. Porcar, and N. J. Wagner, “ Spatiotemporal stress and structure evolution in dynamically sheared polymer-like micellar solutions,” Soft Matter 10(16), 28892898 (2014).
Hu, Y. T. , and A. Lips, “ Kinetics and mechanism of shear banding in an entangled micellar solution,” J. Rheol. 49, 10011027 (2005).
Lopez-Barron, C. R. , A. K. Gurnon, A. P. R. Eberle, L. Porcar, and N. J. Wagner, “ Microstructural evolution of a model, shear-banding micellar solution during shear start-up and cessation,” Phys. Rev. E 89(4), 042301 (2014).
Mavrantzas, V. G. , A. Souvaliotis, and A. N. Beris, “ Pseudospectral calculations of stress-induced concentration changes in viscometric flows of polymer solutions,” Theor. Comput. Fluid Dyn. 5(1), 331 (1993).
Cook, L. P. , and L. F. Rossi, “ Slippage and migration in models of dilute wormlike micellar solutions and polymeric fluids,” J. Non-Newtonian Fluid Mech. 116(2–3), 347369 (2004).
Black, W. B. , and M. D. Graham, “ Slip, concentration fluctuations, and flow instability in sheared polymer solutions,” Macromolecules 34(17), 57315733 (2001).
Bhave, A. V. , R. C. Armstrong, and R. Brown, “ Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions,” J. Chem. Phys. 95(4), 29883000 (1991).
Zhou, L. , L. P. Cook, and G. H. McKinley, “ Probing shear-banding transitions of the VCM model for entangled wormlike micellar solutions using large amplitude oscillatory shear (LAOS) deformations,” J. Non-Newtonian Mech. 165(21–22), 14621472 (2010).
Gurnon, A. K. , and N. J. Wagner, “ Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles,” J. Rheol. 56(2), 333351 (2012).
Lopez-Barron, C. R. , and N. J. Wagner, “ Solvent isotope effect on the microstructure and rheology of cationic worm-like micelles near the isotropic-nematic transition,” Soft Matter 22(7), 1085610863 (2011).
Gurnon, A. K. , P. D. Godfrin, N. J. Wagner, A. P. R. Eberle, P. Butler, and L. Porcar, “ Measuring material microstructure under flow using 1-2 plane flow-small angle neutron scattering,” JoVE 84, e51068 (2014).
Hu, Y. T. , C. Palla, and A. Lips, “ Comparison between shear banding and shear thinning in entangled micellar solutions,” J. Rheol. 52(2), 379400 (2008).
Zhou, L. , L. P. Cook, and G. H. McKinley, “ Multiple shear-banding transitions for a model of wormlike micellar solutions,” SIAM Appl. Math. 72(4), 11921212 (2012).
Zhou, L. , L. P. Cook, and G. H. McKinley, “ Wormlike micellar solutions: III. VCM model predictions in steady and transient shearing flows,” J. Non-Newtonian Mech. 211, 7083 (2014).
Gottlieb, D. , M. Y. Hussaini, and S. A. Orszag, “ Theory and application of spectral methods,” in Spectral Methods for Partial Differential Equations ( SIAM, Philadelphia, Pennsylvania, 1984), pp. 154.
Peyret, R. , Spectral Methods for Incompressible Viscous Flow ( Springer-Verlag, New York, 2002).
Richtmeyer, R. D. , and K. W. Morton, Difference Methods for Initial-Value Problems ( Interscience, New York, 1967).
Dennis, J. E. , and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations ( Prentice-Hall, Englewood Cliffs, New Jersey, 1983).
Germann, N. , M. Dressler, and E. J. Windhab, “ Numerical solution of an extended White-Metzner model for eccentric Taylor-Couette flow,” J. Comput. Phys. 230(21), 78537866 (2011).
Grand, C. , J. Arrault, and M. E. Cates, “ Slow transients and metastability in wormlike micelle rheology,” J. Phys. II France 7(1), 10711086 (1997).
Méndez-Sánchez, A. F. , M. R. López-González, V. H. Rolón-Garrido, J. Pérez-González, and L. de Vargas, “ Instabilities of micellar systems under homogeneous and non-homogeneous flow conditions,” Rheol. Acta 42(1–2), 5663 (2003).
Boukany, P. E. , and S. Q. Wang, “ Use of particle-tracking velocimetry and flow birefringence to study nonlinear flow behavior of entangled wormlike micellar solution: From wall slip, bulk disentanglement to chain scission,” Macromolecules 41(4), 14551464 (2008).
Ouchi, M. , T. Takahashi, and M. Shirakashi, “ Shear-induced structure change and flow-instability in start-up Couette flow of aqueous, wormlike micelle solution,” J. Rheol. 50(3), 341352 (2006).
Sachsenheimer, D. , C. Oelschlaeger, S. Müller, J. Küstner, S. Bindgen, and N. Willenbacher, “ Elongational deformation of wormlike micellar solutions,” J. Rheol. 58(6), 20172042 (2014).
Edwards, B. J. , A. N. Beris, and V. G. Mavrantzas, “ A model with two coupled Maxwell modes,” J. Rheol. 40(5), 917942 (1996).
Cates, M. E. , “ Flow behaviour of entangled surfactant micelles,” J. Phys.: Condens. Matter 8(47), 91679176 (1996).

Data & Media loading...


Article metrics loading...



In this work, we assess the capability of two thermodynamically consistent, microstructure-based models to predict the rheology and microstructure of a model wormlike micellar surfactant solution known to exhibit shear banding undergoing transient simple shear and large amplitude oscillatory shear deformations in a cylindrical Couette rheometer. The microstructure of the surfactant solution was simultaneously measured during the rheometric tests using small angle neutron scattering and this data is used along with the bulk rheometry to critically evaluate the models. The first model is a new, two-species model specifically developed for wormlike micelles, whereas the second model is the well-known Giesekus model with solvent and diffusion. The new model accounts for the microstructural dynamics including flow-induced micellar breakage and recombination, which is shown to be necessary to predict some of the measured rheology and microstructure. More species should be included to improve the quantitative comparison with experiments, as well as nonlinear relaxation, as judged by the success of the Giesekus model to represent certain features of the time-dependent data. More experimental research is needed to validate the role of flow-induced breakage in the nonlinear rheology of wormlike micellar surfactant solutions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd