Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/sor/journal/jor2/60/5/10.1122/1.4959967
1.
Binder, K. , and W. Kob, Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics ( World Scientific, Singapore, 2011).
2.
Rodney, D. , A. Tanguy, and D. Vandembroucq, “ Modeling the mechanics of amorphous solids at different length scale and time scale,” Modell. Simul. Mater. Sci. Eng. 19, 083001 (2011).
http://dx.doi.org/10.1088/0965-0393/19/8/083001
3.
Barrat, J.-L. , A. Lemaitre, in Dynamical Heterogeneities in Glasses, Colloids, and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos ( Oxford University, Oxford, 2011), Chap. 8.
4.
Zausch, J. , J. Horbach, M. Laurati, S. U. Egelhaaf, J. M. Brader, T. Voigtmann, and M. Fuchs, “ From equilibrium to steady state: The transient dynamics of colloidal liquids under shear,” J. Phys.: Condens. Matter 20, 404210 (2008).
http://dx.doi.org/10.1088/0953-8984/20/40/404210
5.
Varnik, F. , L. Bocquet, and Barrat, J.-L. , “ A study of the static yield stress in a binary Lennard-Jones glass,” J. Chem. Phys. 120, 27882801 (2004).
http://dx.doi.org/10.1063/1.1636451
6.
Rottler, J. , and M. O. Robbins, “ Unified description of aging rate effects in yield of glassy solids,” Phys. Rev. Lett. 95, 225504 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.225504
7.
Schuh, C. A. , T. C. Hufnagel, and U. Ramamurty, “ Mechanical behavior of amorphous alloys,” Acta Mater. 55, 40674109 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.01.052
8.
Møller, P. C. F. , S. Rodts, M. A. J. Michels, and D. Bonn, “ Shear banding and yield stress in soft glassy materials,” Phys. Rev. E 77, 041507 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.041507
9.
Divoux, T. , M. A. Fardin, S. Manneville, and S. Lerouge, “ Shear banding of complex fluids,” Ann. Rev. Fluid Mech. 48, 81103 (2016).
http://dx.doi.org/10.1146/annurev-fluid-122414-034416
10.
Fielding, S. M. , “ Shear banding in soft glassy materials,” Rep. Prog. Phys. 77, 102601 (2014).
http://dx.doi.org/10.1088/0034-4885/77/10/102601
11.
Chikkadi, V. , G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall, “ Long-range strain correlations in sheared colloidal glasses,” Phys. Rev. Lett. 107, 198303 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.198303
12.
Besseling, R. , L. Isa, P. Ballesta, G. Petekidis, M. E. Cates, and W. C. K. Poon, “ Shear banding and flow-concentration coupling in colloidal glasses,” Phys. Rev. Lett. 105, 268301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.268301
13.
Bokeloh, J. , S. V. Divinski, G. Reglitz, and G. Wilde, “ Tracer measurements of atomic diffusion inside shear bands of a bulk metallic glass,” Phys. Rev. Lett. 107, 235503 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.235503
14.
Divoux, T. , D. Tamarii, C. Barentin, and S. Manneville, “ Transient shear banding in a simple yield stress fluid,” Phys. Rev. Lett. 104, 208301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.208301
15.
Varnik, F. , L. Bocquet, J.-L. Barrat, and L. Berthier, “ Shear localization in a model glass,” Phys. Rev. Lett. 90, 095702 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.095702
16.
Chaudhuri, P. , and J. Horbach, “ Onset of flow in a confined colloidal glass under an imposed shear stress,” Phys. Rev. E 88, 040301(R) (2013).
http://dx.doi.org/10.1103/PhysRevE.88.040301
17.
Irani, E. , P. Chaudhuri, and C. Heussinger, “ Impact of attractive interactions on the rheology of dense athermal particles,” Phys. Rev. Lett. 112, 188303 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.188303
18.
Shi, Y. , and M. L. Falk, “ Atomic-scale simulations of strain localization in three-dimensional model amorphous solids,” Phys. Rev. B 73, 214201 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.214201
19.
Bailey, N. P. , J. Schiotz, and K. W. Jacobsen, “ Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses,” Phys. Rev. B 73, 064108 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.064108
20.
Chaudhuri, P. , L. Berthier, and L. Bocquet, “ Inhomogeneous shear flows in soft jammed materials with tunable attractive forces,” Phys. Rev. E 85, 021503 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.021503
21.
Dasgupta, R. , H. G. E. Hentschel, and I. Procaccia, “ Microscopic mechanism of shear bands in amorphous solids,” Phys. Rev. Lett. 109, 255502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.255502
22.
Nordstrom, K. N. , E. Verneuil, P. E. Arratia, A. Basu, Z. Zhang, A. G. Yodh, J. P. Gollub, and D. J. Durian, “ Microfluidic rheology of soft colloids above and below jamming,” Phys. Rev. Lett. 105, 175701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.175701
23.
Martens, K. , L. Bocquet, and J.-L. Barrat, “ Spontaneous formation of permanent shear bands in a mesoscopic model of flowing disordered matter,” Soft Matter 8, 41974205 (2012).
http://dx.doi.org/10.1039/c2sm07090a
24.
Coussot, P. , and G. Ovarlez, “ Physical origin of shear-banding in jammed systems,” Eur. Phys. J. E 33, 183188 (2010).
http://dx.doi.org/10.1140/epje/i2010-10660-9
25.
Divoux, T. , D. Tamarii, C. Barentin, S. Teitel, and S. Manneville, “ Yielding dynamics of a Herschel-Bulkley fluid: A critical-like fluidization behaviour,” Soft Matter 8, 41514164 (2012).
http://dx.doi.org/10.1039/c2sm06918k
26.
Tsamados, M. , “ Plasticity and dynamical heterogeneity in driven glassy materials,” Eur. Phys. J. E 32, 165181 (2010).
http://dx.doi.org/10.1140/epje/i2010-10609-0
27.
Moorcroft, R. L. , M. E. Cates, and S. M. Fielding, “ Age-dependent transient shear banding in soft glasses,” Phys. Rev. Lett. 106, 055502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.055502
28.
Moorcroft, R. L. , and S. M. Fielding, “ Criteria for shear banding in time-dependent flows of complex fluids,” Phys. Rev. Lett. 110, 086001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.086001
29.
Manning, M. L. , J. S. Langer, and J. M. Carlson, “ Strain localization in a shear transformation zone model for amorphous solids,” Phys. Rev. E 76, 056106 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.056106
30.
Manning, M. L. , E. G. Daub, J. S. Langer, and J. M. Carlson, “ Rate-dependent shear bands in a shear-transformation-zone model of amorphous solids,” Phys. Rev. E 79, 016110 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.016110
31.
Shi, Y. , M. B. Katz, H. Li, and M. L. Falk, “ Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids,” Phys. Rev. Lett. 98, 185505 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.185505
32.
Jagla, E. A. , “ Shear band dynamics from a mesoscopic modeling of plasticity,” J. Stat. Mech. P12025 (2010).
http://dx.doi.org/10.1088/1742-5468/2010/12/P12025
33.
Vandembroucq, D. , and S. Roux, “ Mechanical noise dependent aging and shear banding behavior of a mesoscopic model of amorphous plasticity,” Phys. Rev. B 84, 134210 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.134210
34.
Kob, W. , and H. C. Andersen, “ Scaling behavior in the β-relaxation regime of a supercooled Lennard-Jones mixture,” Phys. Rev. Lett. 73, 13761379 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1376
35.
Plimpton, S. , “ Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 119 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
36.
Soddemann, T. , B. Dünweg, and K. Kremer, “ Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations,” Phys. Rev. E 68, 046702 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.046702
37.
Lees, A. W. , and S. F. Edwards, “ The computer study of transport processes under extreme conditions,” J. Phys. C: Solid State Phys. 5, 1921 (1972).
http://dx.doi.org/10.1088/0022-3719/5/15/006
38.
Derec, C. , G. Ducouret, A. Ajdari, and F. Lequeux, “ Aging and nonlinear rheology in suspensions of polyethylene oxideprotected silica particles,” Phys. Rev. E 67, 061403 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.061403
39.
Divoux, T. , C. Barentin, and S. Manneville, “ Stress overshoot in a simple yield stress fluid: An extensive study combining rheology and velocimetry,” Soft Matter 7, 93359349 (2011).
http://dx.doi.org/10.1039/c1sm05740e
40.
Park, J. D. , and K. H. Ahn, “ Structural evolution of colloidal gels at intermediate volume fraction under start-up of shear flow,” Soft Matter 9, 11650 (2013).
http://dx.doi.org/10.1039/c3sm52090k
41.
Whittle, M. , and E. Dickinson, “ Stress overshoot in a model particle gel,” J. Chem. Phys. 107, 1019110200 (1997).
http://dx.doi.org/10.1063/1.474155
42.
Koumakis, N. , M. Laurati, S. U. Egelhaaf, J. F. Brady, and G. Petekidis, “ Yielding of hard-sphere glasses during start-up shear,” Phys. Rev. Lett. 108, 098303 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.098303
43.
Amon, A. , A. Bruand, J. Crassous, and J. Clément, “ Hot spots in an athermal system,” Phys. Rev. Lett. 108, 135502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.135502
44.
Sentjabrskaja, T. , P. Chaudhuri, M. Hermes, W. C. K. Poon, J. Horbach, S. U. Egelhaaf, and M. Laurati, “ Microscopic dynamics during creep in colloidal glasses,” Sci. Rep. 5, 11884(11pp.) (2015).
http://dx.doi.org/10.1038/srep11884
45.
Berthier, L. , and G. Biroli, “ Theoretical perspective on the glass transition and amorphous materials,” Rev. Mod. Phys. 83, 587645 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.587
46.
Bocquet, L. , A. Colin, and A. Ajdari, “ Kinetic theory of plastic flow in soft glassy materials,” Phys. Rev. Lett. 103, 036001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.036001
47.
Liu, C. , E. E. Ferrero, F. Puosi, J.-L. Barrat, and K. Martens, “ Driving rate dependence of avalanche statistics and shapes at the yielding transition,” Phys. Rev. Lett. 116, 065501 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.065501
48.
Berthier, L. , “ Yield stress, heterogeneities and activated processes in soft glassy materials,” J. Phys. Condens. Matter 15, S933S943 (2003).
http://dx.doi.org/10.1088/0953-8984/15/11/317
http://aip.metastore.ingenta.com/content/sor/journal/jor2/60/5/10.1122/1.4959967
Loading
/content/sor/journal/jor2/60/5/10.1122/1.4959967
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/sor/journal/jor2/60/5/10.1122/1.4959967
2016-09-12
2016-12-08

Abstract

Molecular dynamics computer simulations of a binary Lennard–Jones glass under shear are presented. The mechanical response of glassy states having different thermal histories is investigated by imposing a wide range of external shear rates, at different temperatures. The stress-strain relations exhibit an overshoot at a strain of around 0.1, marking the yielding of the glass sample and the onset of plastic flow. The amplitude of the overshoot shows a logarithmic behavior with respect to a dimensionless variable, given by the age of the sample times the shear rate. Dynamical heterogeneities having finite lifetimes, in the form of shear bands, are observed as the glass deforms under shear. By quantifying the spatial fluctuations of particle mobility, we demonstrate that such shearbanding occurs only under specific combinations of imposed shear-rate, age of glass, and ambient temperature.

Loading

Full text loading...

/deliver/fulltext/sor/journal/jor2/60/5/1.4959967.html;jsessionid=rBnl63xglZBKnuIZCtkH0e4E.x-aip-live-03?itemId=/content/sor/journal/jor2/60/5/10.1122/1.4959967&mimeType=html&fmt=ahah&containerItemId=content/sor/journal/jor2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=journalofrheology.org/60/5/10.1122/1.4959967&pageURL=http://scitation.aip.org/content/sor/journal/jor2/60/5/10.1122/1.4959967'
Right1,Right2,Right3,