Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Binder, K. , and W. Kob, Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics ( World Scientific, Singapore, 2011).
Rodney, D. , A. Tanguy, and D. Vandembroucq, “ Modeling the mechanics of amorphous solids at different length scale and time scale,” Modell. Simul. Mater. Sci. Eng. 19, 083001 (2011).
Barrat, J.-L. , A. Lemaitre, in Dynamical Heterogeneities in Glasses, Colloids, and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos ( Oxford University, Oxford, 2011), Chap. 8.
Zausch, J. , J. Horbach, M. Laurati, S. U. Egelhaaf, J. M. Brader, T. Voigtmann, and M. Fuchs, “ From equilibrium to steady state: The transient dynamics of colloidal liquids under shear,” J. Phys.: Condens. Matter 20, 404210 (2008).
Varnik, F. , L. Bocquet, and Barrat, J.-L. , “ A study of the static yield stress in a binary Lennard-Jones glass,” J. Chem. Phys. 120, 27882801 (2004).
Rottler, J. , and M. O. Robbins, “ Unified description of aging rate effects in yield of glassy solids,” Phys. Rev. Lett. 95, 225504 (2005).
Schuh, C. A. , T. C. Hufnagel, and U. Ramamurty, “ Mechanical behavior of amorphous alloys,” Acta Mater. 55, 40674109 (2007).
Møller, P. C. F. , S. Rodts, M. A. J. Michels, and D. Bonn, “ Shear banding and yield stress in soft glassy materials,” Phys. Rev. E 77, 041507 (2008).
Divoux, T. , M. A. Fardin, S. Manneville, and S. Lerouge, “ Shear banding of complex fluids,” Ann. Rev. Fluid Mech. 48, 81103 (2016).
Fielding, S. M. , “ Shear banding in soft glassy materials,” Rep. Prog. Phys. 77, 102601 (2014).
Chikkadi, V. , G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall, “ Long-range strain correlations in sheared colloidal glasses,” Phys. Rev. Lett. 107, 198303 (2011).
Besseling, R. , L. Isa, P. Ballesta, G. Petekidis, M. E. Cates, and W. C. K. Poon, “ Shear banding and flow-concentration coupling in colloidal glasses,” Phys. Rev. Lett. 105, 268301 (2010).
Bokeloh, J. , S. V. Divinski, G. Reglitz, and G. Wilde, “ Tracer measurements of atomic diffusion inside shear bands of a bulk metallic glass,” Phys. Rev. Lett. 107, 235503 (2011).
Divoux, T. , D. Tamarii, C. Barentin, and S. Manneville, “ Transient shear banding in a simple yield stress fluid,” Phys. Rev. Lett. 104, 208301 (2010).
Varnik, F. , L. Bocquet, J.-L. Barrat, and L. Berthier, “ Shear localization in a model glass,” Phys. Rev. Lett. 90, 095702 (2003).
Chaudhuri, P. , and J. Horbach, “ Onset of flow in a confined colloidal glass under an imposed shear stress,” Phys. Rev. E 88, 040301(R) (2013).
Irani, E. , P. Chaudhuri, and C. Heussinger, “ Impact of attractive interactions on the rheology of dense athermal particles,” Phys. Rev. Lett. 112, 188303 (2014).
Shi, Y. , and M. L. Falk, “ Atomic-scale simulations of strain localization in three-dimensional model amorphous solids,” Phys. Rev. B 73, 214201 (2006).
Bailey, N. P. , J. Schiotz, and K. W. Jacobsen, “ Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses,” Phys. Rev. B 73, 064108 (2006).
Chaudhuri, P. , L. Berthier, and L. Bocquet, “ Inhomogeneous shear flows in soft jammed materials with tunable attractive forces,” Phys. Rev. E 85, 021503 (2012).
Dasgupta, R. , H. G. E. Hentschel, and I. Procaccia, “ Microscopic mechanism of shear bands in amorphous solids,” Phys. Rev. Lett. 109, 255502 (2012).
Nordstrom, K. N. , E. Verneuil, P. E. Arratia, A. Basu, Z. Zhang, A. G. Yodh, J. P. Gollub, and D. J. Durian, “ Microfluidic rheology of soft colloids above and below jamming,” Phys. Rev. Lett. 105, 175701 (2010).
Martens, K. , L. Bocquet, and J.-L. Barrat, “ Spontaneous formation of permanent shear bands in a mesoscopic model of flowing disordered matter,” Soft Matter 8, 41974205 (2012).
Coussot, P. , and G. Ovarlez, “ Physical origin of shear-banding in jammed systems,” Eur. Phys. J. E 33, 183188 (2010).
Divoux, T. , D. Tamarii, C. Barentin, S. Teitel, and S. Manneville, “ Yielding dynamics of a Herschel-Bulkley fluid: A critical-like fluidization behaviour,” Soft Matter 8, 41514164 (2012).
Tsamados, M. , “ Plasticity and dynamical heterogeneity in driven glassy materials,” Eur. Phys. J. E 32, 165181 (2010).
Moorcroft, R. L. , M. E. Cates, and S. M. Fielding, “ Age-dependent transient shear banding in soft glasses,” Phys. Rev. Lett. 106, 055502 (2011).
Moorcroft, R. L. , and S. M. Fielding, “ Criteria for shear banding in time-dependent flows of complex fluids,” Phys. Rev. Lett. 110, 086001 (2013).
Manning, M. L. , J. S. Langer, and J. M. Carlson, “ Strain localization in a shear transformation zone model for amorphous solids,” Phys. Rev. E 76, 056106 (2007).
Manning, M. L. , E. G. Daub, J. S. Langer, and J. M. Carlson, “ Rate-dependent shear bands in a shear-transformation-zone model of amorphous solids,” Phys. Rev. E 79, 016110 (2009).
Shi, Y. , M. B. Katz, H. Li, and M. L. Falk, “ Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids,” Phys. Rev. Lett. 98, 185505 (2007).
Jagla, E. A. , “ Shear band dynamics from a mesoscopic modeling of plasticity,” J. Stat. Mech. P12025 (2010).
Vandembroucq, D. , and S. Roux, “ Mechanical noise dependent aging and shear banding behavior of a mesoscopic model of amorphous plasticity,” Phys. Rev. B 84, 134210 (2011).
Kob, W. , and H. C. Andersen, “ Scaling behavior in the β-relaxation regime of a supercooled Lennard-Jones mixture,” Phys. Rev. Lett. 73, 13761379 (1994).
Plimpton, S. , “ Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 119 (1995).
Soddemann, T. , B. Dünweg, and K. Kremer, “ Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations,” Phys. Rev. E 68, 046702 (2003).
Lees, A. W. , and S. F. Edwards, “ The computer study of transport processes under extreme conditions,” J. Phys. C: Solid State Phys. 5, 1921 (1972).
Derec, C. , G. Ducouret, A. Ajdari, and F. Lequeux, “ Aging and nonlinear rheology in suspensions of polyethylene oxideprotected silica particles,” Phys. Rev. E 67, 061403 (2003).
Divoux, T. , C. Barentin, and S. Manneville, “ Stress overshoot in a simple yield stress fluid: An extensive study combining rheology and velocimetry,” Soft Matter 7, 93359349 (2011).
Park, J. D. , and K. H. Ahn, “ Structural evolution of colloidal gels at intermediate volume fraction under start-up of shear flow,” Soft Matter 9, 11650 (2013).
Whittle, M. , and E. Dickinson, “ Stress overshoot in a model particle gel,” J. Chem. Phys. 107, 1019110200 (1997).
Koumakis, N. , M. Laurati, S. U. Egelhaaf, J. F. Brady, and G. Petekidis, “ Yielding of hard-sphere glasses during start-up shear,” Phys. Rev. Lett. 108, 098303 (2012).
Amon, A. , A. Bruand, J. Crassous, and J. Clément, “ Hot spots in an athermal system,” Phys. Rev. Lett. 108, 135502 (2012).
Sentjabrskaja, T. , P. Chaudhuri, M. Hermes, W. C. K. Poon, J. Horbach, S. U. Egelhaaf, and M. Laurati, “ Microscopic dynamics during creep in colloidal glasses,” Sci. Rep. 5, 11884(11pp.) (2015).
Berthier, L. , and G. Biroli, “ Theoretical perspective on the glass transition and amorphous materials,” Rev. Mod. Phys. 83, 587645 (2011).
Bocquet, L. , A. Colin, and A. Ajdari, “ Kinetic theory of plastic flow in soft glassy materials,” Phys. Rev. Lett. 103, 036001 (2009).
Liu, C. , E. E. Ferrero, F. Puosi, J.-L. Barrat, and K. Martens, “ Driving rate dependence of avalanche statistics and shapes at the yielding transition,” Phys. Rev. Lett. 116, 065501 (2016).
Berthier, L. , “ Yield stress, heterogeneities and activated processes in soft glassy materials,” J. Phys. Condens. Matter 15, S933S943 (2003).

Data & Media loading...


Article metrics loading...



Molecular dynamics computer simulations of a binary Lennard–Jones glass under shear are presented. The mechanical response of glassy states having different thermal histories is investigated by imposing a wide range of external shear rates, at different temperatures. The stress-strain relations exhibit an overshoot at a strain of around 0.1, marking the yielding of the glass sample and the onset of plastic flow. The amplitude of the overshoot shows a logarithmic behavior with respect to a dimensionless variable, given by the age of the sample times the shear rate. Dynamical heterogeneities having finite lifetimes, in the form of shear bands, are observed as the glass deforms under shear. By quantifying the spatial fluctuations of particle mobility, we demonstrate that such shearbanding occurs only under specific combinations of imposed shear-rate, age of glass, and ambient temperature.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd