Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Israelachvili, J. N. , Intermolecular and Surface Forces ( Academic, Elsevier, 2011).
Dreiss, C. A. , “ Wormlike micelles: Where do we stand? Recent developments, linear rheology and scattering techniques,” Soft Matter 3, 956970 (2007).
Rehage, H. , and H. Hoffmann, “ Viscoelastic surfactant solutions—Model systems for rheological research,” Mol. Phys. 74, 933973 (1991).
Fielding, S. M. , and P. D. Olmsted, “ Flow phase diagrams for concentration-coupled shear banding,” Eur. Phys. J. E 11, 6583 (2003).
Olmsted, P. D. , “ Perspectives on shear-banding in complex fluids,” Rheol. Acta 47, 283300 (2008).
Divoux, T. , M. A. Fardin, S. Manneville, and S. Lerouge, “ Shear banding of complex fluids,” Annu. Rev. Fluid Mech. 48, 81103 (2016).
Fielding, S. M. , “ Complex dynamics of shear-banding flows,” Soft Matter 3, 12621279 (2007).
Lerouge, S. , and J. F. Berret, “ Shear-induced transitions and instabilities in surfactant wormlike micelles,” Adv. Polym. Sci. 230, 171 (2010).
Berret, J.-F. , “ Rheology of wormlike micelles: Equilibrium properties and shear banding transitions,” in Molecular Gels, edited by R. G. Weiss and P. Terech ( Springer, Netherlands, 2006), pp. 667720.
Larson, R. G. , “ Instabilities in viscoelastic flows,” Rheol. Acta 31, 213263 (1992).
Muller, S. J. , “ Elastically-influenced instabilities in Taylor-Couette and other flows with curved streamlines: A review,” Korea-Aust. Rheol. J. 20, 117125 (2008).
Steinberg, V. , “ Turbulence: Elastic,” Scholarpedia 3, 5476 (2008).
Fardin, M.-A. , and S. Lerouge, “ Instabilities in wormlike micelle systems,” Eur. Phys. J. E 35, 129 (2012).
Fardin, M.-A. , and S. Lerouge, “ Flows of living polymer fluids,” Soft matter 10, 87898799 (2014).
Kuczera, S. , C. Perge, M.-A. Fardin, T. I. Brox, M. A. K. Williams, S. Manneville, and P. Galvosas, “ Anomalous shear banding revisited with rheo-nmr and rheo-usv,” Rheol. Acta 54, 619636 (2015).
Mohammadigoushki, H. , and S. J. Muller, “ A flow visualization and superposition rheology study of shear-banding wormlike micelle solutions,” Soft matter 12, 10511061 (2016).
Casanellas, L. , C. J. Dimitriou, T. J. Ober, and G. H. McKinley, “ Spatiotemporal dynamics of multiple shear-banding events for viscoelastic micellar fluids in cone-plate shearing flows,” J. Non-Newtonian Fluid Mech. 222, 234247 (2015); Rheometry (and General Rheology): Festschrift dedicated to Professor K Walters {FRS} on the occasion of his 80th birthday.
Nghe, P. , S. M. Fielding, P. Tabeling, and A. Ajdari, “ Interfacially driven instability in the microchannel flow of a shear-banding fluid,” Phys. Rev. Lett. 104, 248303 (2010).
Haward, S. J. , and G. H. McKinley, “ Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: Effects of surfactant concentration and ionic environment,” Phys. Rev. E 85, 031502 (2012).
Majumdar, S. , and A. K. Sood, “ Universality and scaling behavior of injected power in elastic turbulence in wormlike micellar gel,” Phys. Rev. E 84, 015302 (2011).
Perge, C. , M.-A. Fardin, and S. Manneville, “ Inertio-elastic instability of non shear-banding wormlike micelles,” Soft matter 10, 14501454 (2014).
Fardin, M.-A. , C. Perge, N. Taberlet, and S. Manneville, “ Flow-induced structures versus flow instabilities,” Phys. Rev. E 89, 011001(R) (2014).
Fielding, S. M. , “ Viscoelastic Taylor-Couette instability of shear banded flow,” Phys. Rev. Lett. 104, 198303 (2010).
Nicolas, A. , and A. Morozov, “ Nonaxisymmetric instability of shear-banded Taylor-Couette flow,” Phys. Rev. Lett. 108, 088302 (2012).
Fielding, S. M. , and H. J. Wilson, “ Shear banding and interfacial instability in planar poiseuille flow,” J. Non-Newtonian Fluid Mech. 165, 196202 (2010).
Cromer, M. , L. P. Cook, and G. H. McKinley, “ Interfacial instability of pressure-driven channel flow for a two-species model of entangled wormlike micellar solutions,” J. Non-Newtonian Fluid Mech. 166, 566567 (2011).
Steinberg, V. , and A. Groisman, “ Elastic versus inertial instability in Couette-Taylor flow of a polymer solution: Review,” Philos. Mag. B 78, 253263 (1998).
Dealy, J. M. , “ Weissenberg and Deborah numbers–their definition and use,” Rheol. Bull. 79(2), 1418 (2010).
Larson, R. G. , E. S. G. Shaqfeh, and S. J. Muller, “ A purely elastic instability in Taylor-Couette flow,” J. Fluid Mech. 218, 573600 (1990).
Taylor, G. I. , “ Stability of a viscous liquid contained between two rotating cylinders,” Philos. Trans. R. Soc. London, Ser. A 223, 289343 (1923).
Andereck, C. D. , S. S. Liu, and H. L. Swinney, “ Flow regimes in a circular couette system with independently rotating cylinders,” J. Fluid Mech. 164, 155183 (1986).
Tagg, R. , “ The Couette-Taylor problem,” Nonlinear Sci. Today 4, 125 (1994).
McKinley, G. H. , P. Pakdel, and A. Öztekin, “ Rheological and geometric scaling of purely elastic flow instabilities,” J. Non-Newtonian Fluid Mech. 67, 1947 (1996).
Fardin, M.-A. , C. Perge, and N. Taberlet, “ “The hydrogen atom of fluid dynamics”–introduction to the Taylor–Couette flow for soft matter scientists,” Soft Matter 10, 35233535 (2014).
Fardin, M.-A. , T. J. Ober, C. Gay, G. Grégoire, G. H. McKinley, and S. Lerouge, “ Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids,” Eur. Phys. Lett. 96, 44004 (2011).
Fardin, M.-A. , T. J. Ober, V. Grenard, S. Manneville, G. H. McKinley, and S. Lerouge, “ Interplay between elastic instabilities and shear-banding: Three categories of Taylor-Couette flows and beyond,” Soft Matter 8, 1007210089 (2012).
Fardin, M.-A. , B. Lasne, O. Cardoso, G. Grégoire, M. Argentina, J.-P. Decruppe, and S. Lerouge, “ Taylor-like vortices in shear-banding flow of giant micelles,” Phys. Rev. Lett. 103, 028302 (2009).
Fardin, M.-A. , T. Divoux, M. A. Guedeau-Boudeville, I. Buchet-Maulien, J. Browaeys, G. H. McKinley, S. Manneville, and S. Lerouge, “ Shear-banding in surfactant wormlike micelles: Elastic instabilities and wall slip,” Soft Matter 8, 25352553 (2012).
Fardin, M.-A. , D. Lopez, J. Croso, Guillaume Grégoire, Olivier Cardoso, G. H. McKinley, and S. Lerouge, “ Elastic turbulence in shear banding wormlike micelles,” Phys. Rev. Lett. 104, 178303 (2010).
Perge, C. , M.-A. Fardin, and S. Manneville, “ Surfactant micelles: Model systems for flow instabilities of complex fluids,” Eur. Phys. J. E 37, 2334 (2014).
Lerouge, S. , M. Argentina, and J. P. Decruppe, “ Interface instability in shear-banding flow,” Phys. Rev. Lett. 96, 088301 (2006).
Lerouge, S. , M.-A. Fardin, M. Argentina, G. Grégoire, and O. Cardoso, “ Interface dynamics in shear-banding flow of giant micelles,” Soft Matter 4, 18081819 (2008).
Helgeson, M. E. , P. A. Vasquez, E. W. Kaler, and N. J. Wagner, “ Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition,” J. Rheol. 53, 727756 (2009).
Gurnon, A. K. , C. Lopez-Barron, M. J. Wasbrough, L. Porcar, and N. J. Wagner, “ Spatially resolved concentration and segmental flow alignment in a shear-banding solution of polymer-like micelles,” ACS Macro Lett. 3, 276280 (2014).
López-Barrón, C. R. , and N. J. Wagner, “ Solvent isotope effect on the microstructure and rheology of cationic worm-like micelles near the isotropic-nematic transition,” Soft Matter 7, 1085610863 (2011).
Thareja, P. , I. H. Hoffmann, M. W. Liberatore, M. E. Helgeson, Y. T. Hu, M. Gradzielski, and N. J. Wagner, “ Shear-induced phase separation (sips) with shear banding in solutions of cationic surfactant and salt,” J. Rheol. 55, 13751397 (2011).
Helgeson, M. E. , M. D. Reichert, Y. T. Hu, and N. J. Wagner, “ Relating shear banding, structure, and phase behavior in wormlike micellar solutions,” Soft Matter 5, 38583869 (2009).
Helgeson, M. E. , L. Porcar, C. Lopez-Barron, and N. J. Wagner, “ Direct observation of flow-concentration coupling in a shear-banding fluid,” Phys. Rev. Lett. 105, 084501 (2010).
Calabrese, M. A. , S. A. Rogers, R. P. Murphy, and N. J. Wagner, “ The rheology and microstructure of branched micelles under shear,” J. Rheol. 59, 12991328 (2015).
See supplementary material at for Table SI: Linear rheological properties of the samples under investigation: Comparison with the original works by Helgeson et al. [43] and Gurnon et al. [44]. Table SII: Comparison between the geometrical parameters used in the present study and in the earlier works [43,44]. Figure S1: Comparison between dimensionless numbers of interest in Fardin et al. and Wagner et al. for the two systems under investigation. Figure S2: Views of the velocity gradient-vorticity (r, z) plane at long times for different applied shear rates in a TC cell with and . Figure S3: Time series of the shear stress following a step shear rate. Supplementary movies: Movies showing the evolution of the shear banding structure following various step shear rates. The system is CTAB/D2O 16.7 wt. %. Supplementary movie 1: s–1. Supplementary movie 2: s–1. Supplementary movie 3: s–1. Supplementary movie 4: s–1.[Supplementary Material]
Gallot, T. , C. Perge, V. Grenard, M.-A. Fardin, N. Taberlet, and S. Manneville, “ Ultrafast ultrasonic imaging coupled to rheometry: Principle and illustration,” Rev. Sci. Instrum. 84, 045107 (2013).
Helfand, E. , and G. H. Fredrickson, “ Large fluctuations in polymer solutions under shear,” Phys. Rev. Lett. 62, 24682471 (1989).
Kadoma, I. A. , and J. W. van Egmond, “ “Tuliplike” scattering patterns in wormlike micelles under shear flow,” Phys. Rev. Lett. 76, 44324435 (1996).
Coles, D. , “ Transition in circular couette flow,” J. Fluid Mech. 21, 385425 (1965).
Groisman, A. , and V. Steinberg, “ Couette-taylor flow in a dilute polymer solution,” Phys. Rev. Lett. 77, 14801483 (1996).
Dutcher, C. S. , and S. J. Muller, “ Effects of moderate elasticity on the stability of co-and counter-rotating taylor–couette flows,” J. Rheol. 57, 791812 (2013).
Lerouge, S. , J. P. Decruppe, and P. Olmsted, “ Birefringence banding in a micellar solution or the complexity of heterogeneous flows,” Langmuir 20, 1135511365 (2004).
Lee, J. Y. , G. G. Fuller, N. E. Hudson, and X. F. Yuan, “ Investigation of shear-banding structure in wormlike micellar solution by point-wise flow-induced birefringence measurements,” J. Rheol. 49, 537550 (2005).
Hu, Y. T. , and A. Lips, “ Kinetics and mechanism of shear banding in an entangled micellar solution,” J. Rheol. 49, 10011027 (2005).
Fielding, S. M. , “ Vorticity structuring and velocity rolls triggered by gradient shear bands,” Phys. Rev. E 76, 016311 (2007).
Lasne, B. , Ecoulement tridimensionnels de micelles géantes, Thèse de Doctorat, Université Paris-Diderot, 2010.

Data & Media loading...


Article metrics loading...



We report on the shear banding flow of semidilute and concentrated wormlike micelle systems which have been probed in the recent past using rheology, velocimetry, and small angle neutron scattering techniques. We show that the samples under consideration exhibit unstable shear banding flow due to the development of flow instabilities reminiscent of elastic or inertio-elastic instabilities and turbulence. Evidence for such unstable shear banding flows can be obtained either from direct visualizations, flow visualizations or two-dimensional velocimetry. The presence or not of instabilities on top of shear banding flows cannot be deduced from global rheology and/or 1D velocimetry alone. These flow instabilities are associated with more or less complex flow kinematics and appear to be ubiquitous in the flow of wormlike micelles. Using a pedagogical example, we show that their presence can strongly impact microstructural characterizations of the banded state.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd