Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/sor/journal/jor2/60/5/10.1122/1.4961480
1.
Goveas, J. , and P. Olmsted, “ A minimal model for vorticity and gradient banding in complex fluids,” Eur. Phys. J. E 6, 7989 (2001).
http://dx.doi.org/10.1007/s101890170030
2.
Olmsted, P. D. , “ Perspectives on shear banding in complex fluids,” Rheol. Acta 47, 283300 (2008).
http://dx.doi.org/10.1007/s00397-008-0260-9
3.
Britton, M. M. , and P. T. Callaghan, “ Two-phase shear band structures at uniform stress,” Phys. Rev. Lett. 78, 49304933 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4930
4.
Salmon, J.-B. , S. Manneville, and A. Colin, “ Shear banding in a lyotropic lamellar phase. I. time-averaged velocity profiles,” Phys. Rev. E 68, 051503 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.051503
5.
Manneville, S. , A. Colin, G. Waton, and F. Schosseler, “ Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution,” Phys. Rev. E 75, 061502 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.061502
6.
Rogers, S. , D. Vlassopoulos, and P. Callaghan, “ Aging, yielding, and shear banding in soft colloidal glasses,” Phys. Rev. Lett. 100, 128304 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.128304
7.
Divoux, T. , D. Tamarii, C. Barentin, and S. Manneville, “ Transient shear banding in a simple yield stress fluid,” Phys. Rev. Lett. 104, 208301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.208301
8.
Martin, J. D. , and Y. T. Hu, “ Transient and steady-state shear banding in aging soft glassy materials,” Soft Matter 8, 69406949 (2012).
http://dx.doi.org/10.1039/c2sm25299f
9.
Coussot, P. , J. S. Raynaud, F. Bertrand, P. Moucheront, J. P. Guilbaud, H. T. Huynh, S. Jarny, and D. Lesueur, “ Coexistence of liquid and solid phases in flowing soft-glassy materials,” Phys. Rev. Lett. 88, 218301 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.218301
10.
Li, Y. , M. Hu, G. B. McKenna, C. J. Dimitriou, G. H. McKinley, R. M. Mick, D. C. Venerus, and L. A. Archer, “ Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions,” J. Rheol. 57, 14111428 (2013).
http://dx.doi.org/10.1122/1.4816735
11.
Wang, S.-Q. , G. Liu, S. Cheng, P. E. Boukany, Y. Wang, and X. Li, “ Letter to the editor: Sufficiently entangled polymers do show shear strain localization at high enough weissenberg numbers,” J. Rheol. 58, 10591069 (2014).
http://dx.doi.org/10.1122/1.4884361
12.
Wang, S.-Q. , S. Ravindranath, and P. E. Boukany, “ Homogeneous shear, wall slip, and shear banding of entangled polymeric liquids in simple-shear rheometry: A roadmap of non-linear rheology,” Macromolecules 44, 183190 (2011).
http://dx.doi.org/10.1021/ma101223q
13.
Ravindranath, S. , S.-Q. Wang, M. Ofechnowicz, and R. P. Quirk, “ Banding in simple steady shear of entangled polymer solutions,” Macromolecules 41, 26632670 (2008).
http://dx.doi.org/10.1021/ma7027352
14.
Divoux, T. , M. A. Fardin, S. Manneville, and S. Lerouge, “ Shear banding of complex fluids,” Annu. Rev. Fluid Mech. 48, 81103 (2016).
http://dx.doi.org/10.1146/annurev-fluid-122414-034416
15.
Manneville, S. , “ Recent experimental probes of shear banding,” Rheol. Acta 47, 301318 (2008).
http://dx.doi.org/10.1007/s00397-007-0246-z
16.
Fielding, S. M. , “ Shear banding in soft glassy materials,” Rep. Prog. Phys. 77, 102601 (2014).
http://dx.doi.org/10.1088/0034-4885/77/10/102601
17.
Moorcroft, R. L. , and S. M. Fielding, “ Criteria for shear banding in time-dependent flows of complex fluids,” Phys. Rev. Lett. 110, 086001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.086001
18.
Moorcroft, R. L. , and S. M. Fielding, “ Shear banding in time-dependent flows of polymers and wormlike micelles,” J. Rheol. 58, 103147 (2014).
http://dx.doi.org/10.1122/1.4842155
19.
Adams, J. M. , and P. D. Olmsted, “ Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions,” Phys. Rev. Lett. 102, 067801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.067801
20.
Moorcroft, R. L. , M. E. Cates, and S. M. Fielding, “ Age-dependent transient shear banding in soft glasses,” Phys. Rev. Lett. 106, 055502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.055502
21.
Manning, M. L. , J. S. Langer, and J. M. Carlson, “ Strain localization in a shear transformation zone model for amorphous solids,” Phys. Rev. E 76, 056106 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.056106
22.
Manning, M. L. , E. G. Daub, J. S. Langer, and J. M. Carlson, “ Rate-dependent shear bands in a shear-transformation-zone model of amorphous solids,” Phys. Rev. E 79, 016110 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.016110
23.
Jagla, E. A. , “ Shear band dynamics from a mesoscopic modeling of plasticity,” J. Stat. Mech.: Theory Exp. 2010, P12025.
http://dx.doi.org/10.1088/1742-5468/2010/12/P12025
24.
Adams, J. M. , S. M. Fielding, and P. D. Olmsted, “ Transient shear banding in entangled polymers: A study using the rolie-poly model,” J. Rheol. 55, 10071032 (2011).
http://dx.doi.org/10.1122/1.3610169
25.
Boukany, P. E. , and S.-Q. Wang, “ Use of particle-tracking velocimetry and ow birefringence to study nonlinear ow behavior of entangled wormlike micellar solution: From wall slip, bulk disentanglement to chain scission,” Macromolecules 41, 14551464 (2008).
http://dx.doi.org/10.1021/ma702527s
26.
Hu, Y. T. , C. Palla, and A. Lips, “ Comparison between shear banding and shear thinning in entangled micellar solutions,” J. Rheol. 52, 379400 (2008).
http://dx.doi.org/10.1122/1.2836937
27.
Boukany, P. E. , and S.-Q. Wang, “ Shear banding or not in entangled DNA solutions depending on the level of entanglement,” J. Rheol. 53, 7383 (2009).
http://dx.doi.org/10.1122/1.3009299
28.
Hu, Y. , L. Wilen, A. Philips, and A. Lips, “ Is the constitutive relation for entangled polymers monotonic?,” J. Rheol. 51, 275295 (2007).
http://dx.doi.org/10.1122/1.2433701
29.
Boukany, P. E. , and S.-Q. Wang, “ Exploring the transition from wall slip to bulk shearing banding in well-entangled dna solutions,” Soft Matter 5, 780789 (2009).
http://dx.doi.org/10.1039/B804791J
30.
Divoux, T. , C. Barentin, and S. Manneville, “ Stress overshoot in a simple yield stress fluid: An extensive study combining rheology and velocimetry,” Soft Matter 7, 93359349 (2011).
http://dx.doi.org/10.1039/c1sm05740e
31.
Cao, J. , and A. E. Likhtman, “ Shear banding in molecular dynamics of polymer melts,” Phys. Rev. Lett. 108, 028302 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.028302
32.
Shi, Y. , M. B. Katz, H. Li, and M. L. Falk, “ Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids,” Phys. Rev. Lett. 98, 185505 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.185505
33.
Fielding, S. M. , R. L. Moorcroft, R. G. Larson, and M. E. Cates, “ Modeling the relaxation of polymer glasses under shear and elongational loads,” J. Chem. Phys. 138, 12A504 (2013).
http://dx.doi.org/10.1063/1.4769253
34.
Kurokawa, A. , V. Vidal, K. Kurita, T. Divoux, and S. Manneville, “ Avalanche-like fluidization of a non-brownian particle gel,” Soft Matter 11, 90269037 (2015).
http://dx.doi.org/10.1039/C5SM01259G
35.
Hu, Y. T. , and A. Lips, “ Kinetics and mechanism of shear banding in an entangled micellar solution,” J. Rheol. 49, 10011027 (2005).
http://dx.doi.org/10.1122/1.2008295
36.
Hu, Y. T. , “ Steady-state shear banding in entangled polymers?,” J. Rheol. 54, 13071323 (2010).
http://dx.doi.org/10.1122/1.3494134
37.
Divoux, T. , C. Barentin, and S. Manneville, “ From stress-induced fluidization processes to herschel-bulkley behaviour in simple yield stress fluids,” Soft Matter 7, 84098418 (2011).
http://dx.doi.org/10.1039/c1sm05607g
38.
Gibaud, T. , D. Frelat, and S. Manneville, “ Heterogeneous yielding dynamics in a colloidal gel,” Soft Matter 6, 34823488 (2010).
http://dx.doi.org/10.1039/c000886a
39.
Hyun, K. , M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee, R. H. Ewoldt, and G. H. McKinley, “ A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (laos),” Prog. Polym. Sci. 36, 16971753 (2011).
http://dx.doi.org/10.1016/j.progpolymsci.2011.02.002
40.
Carter, K. A. , J. M. Girkin, and S. M. Fielding, “ Shear banding in large amplitude oscillatory shear (LAOStrain and LAOStress)of polymers and wormlike micelles,” J. Rheol. 60, 883904 (2016); e-print arxiv.org/abs/1510.00191.
41.
Yerushalmi, J. , S. Katz, and R. Shinnar, “ The stability of steady shear flows of some viscoelastic fluids,” Chem. Eng. Sci. 25, 18911902 (1970).
http://dx.doi.org/10.1016/0009-2509(70)87007-5
42.
Spenley, N. A. , M. E. Cates, and T. C. B. McLeish, “ Nonlinear rheology of wormlike micelles,” Phys. Rev. Lett. 71, 939942 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.939
43.
Olmsted, P. , O. Radulescu, and C. Lu, “ Johnson-segalman model with a diffusion term in cylindrical couette flow,” J. Rheol. 44, 257275 (2000).
http://dx.doi.org/10.1122/1.551085
44.
Grand, C. , J. Arrault, and M. Cates, “ Slow transients and metastability in wormlike micelle rheology,” J. Phys. II 7, 10711086 (1997).
http://dx.doi.org/10.1051/jp2:1997172
45.
Schmitt, V. , C. M. Marques, and F. Lequeux, “ Shear-induced phase-separation of complex fluids – the role of flow-concentration coupling,” Phys. Rev. E 52, 40094015 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.4009
46.
Brochard, F. , and P. G. Degennes, “ Dynamical scaling for polymers in theta-solvents,” Macromolecules 10, 11571161 (1977).
http://dx.doi.org/10.1021/ma60059a048
47.
Helfand, E. , and G. H. Fredrickson, “ Large fluctuations in polymer-solutions under shear,” Phys. Rev. Lett. 62, 24682471 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.2468
48.
Doi, M. , and A. Onuki, “ Dynamic coupling between stress and composition in polymer-solutions and blends,” J. Phys. II (France) 2, 16311656 (1992).
http://dx.doi.org/10.1051/jp2:1992225
49.
Milner, S. T. , “ Dynamical theory of concentration fluctuations in polymer-solutions under shear,” Phys. Rev. E 48, 36743691 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.3674
50.
Wu, X. L. , D. J. Pine, and P. K. Dixon, “ Enhanced concentration fluctuations in polymer-solutions under shear-flow,” Phys. Rev. Lett. 66, 24082411 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2408
51.
Beris, A. N. , and V. G. Mavrantzas, “ On the compatibility between various macroscopic formalisms for the concentration and flow of dilute polymer solutions,” J. Rheol. 38, 12351250 (1994).
http://dx.doi.org/10.1122/1.550541
52.
Sun, T. , A. C. Balazs, and D. Jasnow, “ Dynamics of phase separation in polymer solutions under shear flow,” Phys. Rev. E 55, R6344R6347 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.R6344
53.
Fielding, S. , and P. Olmsted, “ Kinetics of the shear banding instability in startup flows,” Phys. Rev. E 68, 036313 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.036313
54.
Fielding, S. , and P. Olmsted, “ Early stage kinetics in a unified model of shear-induced demixing and mechanical shear banding instabilities,” Phys. Rev. Lett. 90, 224501 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.224501
55.
Fielding, S. , and P. Olmsted, “ Flow phase diagrams for concentration-coupled shear banding,” Eur. Phys. J. E 11, 6583 (2003).
http://dx.doi.org/10.1140/epje/i2002-10128-7
56.
Cromer, M. , M. C. Villet, G. H. Fredrickson, and L. G. Leal, “ Shear banding in polymer solutions,” Phys. Fluids 25, 051703 (2013).
http://dx.doi.org/10.1063/1.4805089
57.
Cromer, M. , G. H. Fredrickson, and L. G. Leal, “ A study of shear banding in polymer solutions,” Phys. Fluids 26, 063101 (2014).
http://dx.doi.org/10.1063/1.4878842
58.
Besseling, R. , L. Isa, P. Ballesta, G. Petekidis, M. E. Cates, and W. C. K. Poon, “ Shear banding and flow-concentration coupling in colloidal glasses,” Phys. Rev. Lett. 105, 268301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.268301
59.
Jin, H. , K. Kang, K. H. Ahn, and J. K. G. Dhont, “ Flow instability due to coupling of shear-gradients with concentration: non-uniform flow of (hard-sphere) glasses,” Soft Matter 10, 94709485 (2014).
http://dx.doi.org/10.1039/C4SM01329H
60.
Ragouilliaux, A. , B. Herzhaft, F. Bertrand, and P. Coussot, “ Flow instability and shear localization in a drilling mud,” Rheol. Acta 46, 261271 (2006).
http://dx.doi.org/10.1007/s00397-006-0114-2
61.
Bandyopadhyay, R. , G. Basappa, and A. K. Sood, “ Observation of chaotic dynamics in dilute sheared aqueous solutions of ctat,” Phys. Rev. Lett. 84, 20222025 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2022
62.
Ganapathy, R. , and A. K. Sood, “ Intermittency route to rheochaos in wormlike micelles with flow-concentration coupling,” Phys. Rev. Lett. 96, 108301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.108301
63.
Fielding, S. , and P. Olmsted, “ Spatiotemporal oscillations and rheochaos in a simple model of shear banding,” Phys. Rev. Lett. 92, 084502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.084502
64.
Aradian, A. , and M. Cates, “ Instability and spatiotemporal rheochaos in a shear-thickening fluid model,” Europhys. Lett. 70, 397403 (2005).
http://dx.doi.org/10.1209/epl/i2005-10011-9
65.
Aradian, A. , and M. E. Cates, “ Minimal model for chaotic shear banding in shear thickening fluids,” Phys. Rev. E 73, 041508 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041508
66.
Derec, C. , G. Ducouret, A. Ajdari, and F. Lequeux, “ Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles,” Phys. Rev. E 67, 061403 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.061403
67.
Rogers, S. A. , P. T. Callaghan, G. Petekidis, and D. Vlassopoulos, “ Time-dependent rheology of colloidal star glasses,” J. Rheol. 54, 133158 (2010).
http://dx.doi.org/10.1122/1.3270524
68.
Koumakis, N. , and G. Petekidis, “ Two step yielding in attractive colloids: transition from gels to attractive glasses,” Soft Matter 7, 24562470 (2011).
http://dx.doi.org/10.1039/c0sm00957a
69.
Dimitriou, C. J. , and G. H. McKinley, “ A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid,” Soft Matter 10, 66196644 (2014).
http://dx.doi.org/10.1039/C4SM00578C
70.
Likhtman, A. E. , and R. S. Graham, “ Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-poly equation,” J. Non-Newtonian Fluid Mech. 114, 112 (2003).
http://dx.doi.org/10.1016/S0377-0257(03)00114-9
71.
Gibaud, T. , C. Barentin, and S. Manneville, “ Influence of boundary conditions on yielding in a soft glassy material,” Phys. Rev. Lett. 101, 258302 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.258302
72.
Mohagheghi, M. , and B. Khomami, “ Elucidating the flow-microstructure coupling in entangled polymer melts: Part II. Molecular mechanisms of shear banding,” J. Rheol. 60, 861872 (2016).
73.
Colombo, J. , and E. Del Gado, “ Stress localization, stiffening, and yielding in a model colloidal gel,” J. Rheol. 58, 10891116 (2014).
http://dx.doi.org/10.1122/1.4882021
74.
Varnik, F. , L. Bocquet, and J. L. Barrat, “ A study of the static yield stress in a binary Lennard-Jones glass,” J. Chem. Phys. 120, 27882801 (2004).
http://dx.doi.org/10.1063/1.1636451
75.
Shrivastav, G. P. , P. Chaudhuri, and J. Horbach, “ Heterogeneous dynamics during yielding of glasses: Effect of aging,” J. Rheol. 60, 835847 (2016).
76.
Kabla, A. , J. Scheibert, and G. Debregeas, “ Quasi-static rheology of foams. part 2. continuous shear flow,” J. Fluid Mech. 587, 4572 (2007).
http://dx.doi.org/10.1017/S0022112007007276
77.
Barry, J. D. , D. Weaire, and S. Hutzler, Rheol. Acta 49, 687 (2010); 5th Annual European Rheology Conference (AERC 2009), Cardiff Univ, Cardiff, Wales, Apr. 15–17, 2009.
http://dx.doi.org/10.1007/s00397-010-0449-6
78.
Lehtinen, A. , A. Puisto, X. Illa, M. Mohtaschemi, and M. J. Alava, “ Transient shear banding in viscoelastic maxwell fluids,” Soft Matter 9, 80418049 (2013).
http://dx.doi.org/10.1039/c3sm50988e
79.
Hinkle, A. R. , and M. R. Falk, “ A small-gap effective-temperature model of transient shear band formation during flow,” J. Rheol. 60, 873882 (2016).
80.
Divoux, T. , V. Grenard, and S. Manneville, “ Rheological hysteresis in soft glassy materials,” Phys. Rev. Lett. 110, 018304 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.018304
81.
Magnin, A. , and J. Piau, “ Cone-and-plate rheometry of yield stress fluids – study of an aqueous gel,” J. Non-Newtonian Fluid Mech. 36, 85108 (1990).
http://dx.doi.org/10.1016/0377-0257(90)85005-J
82.
Grenard, V. , T. Divoux, N. Taberlet, and S. Manneville, “ Timescales in creep and yielding of attractive gels,” Soft Matter 10, 15551571 (2014).
http://dx.doi.org/10.1039/c3sm52548a
83.
Sentjabrskaja, T. , P. Chaudhuri, M. Hermes, W. C. K. Poon, J. Horbach, S. U. Egelhaaf, and M. Laurati, “ Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities,” Sci. Rep. 5, 11884 (2015).
http://dx.doi.org/10.1038/srep11884
84.
Chaudhuri, P. , and J. Horbach, “ Onset of ow in a confined colloidal glass under an imposed shear stress,” Phys. Rev. E 88, 040301 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.040301
85.
Agimelen, O. S. , and P. D. Olmsted, “ Apparent fracture in polymeric fluids under step shear,” Phys. Rev. Lett. 110, 204503 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.204503
86.
Marrucci, G. , “ Dynamics of entanglements: A nonlinear model consistent with the cox-merz rule,” J. Non-Newtonian Fluid Mech. 62, 279289 (1996).
http://dx.doi.org/10.1016/0377-0257(95)01407-1
87.
Ianniruberto, G. , and G. Marrucci, “ Convective constraint release (ccr) revisited,” J. Rheol. 58, 89102 (2014).
http://dx.doi.org/10.1122/1.4843957
88.
Marrucci, G. , and N. Grizzuti, “ The free energy function of the Doi-Edwards theory: analysis of the instabilities in stress relaxation,” J. Rheol. 27, 433450 (1983).
http://dx.doi.org/10.1122/1.549715
89.
Li, X. , and S.-Q. Wang, “ Elastic yielding after step shear and during laos in the absence of meniscus failure,” Rheol. Acta 49, 985991 (2010).
http://dx.doi.org/10.1007/s00397-010-0465-6
90.
Boukany, P. E. , and S.-Q. Wang, “ Exploring origins of interfacial yielding and wall slip in entangled linear melts during shear or after shear cessation,” Macromolecules 42, 22222228 (2009).
http://dx.doi.org/10.1021/ma802644r
91.
Wang, S.-Q. , S. Ravindranath, P. Boukany, M. Olechnowicz, R. P. Quirk, A. Halasa, and J. Mays, “ Nonquiescent relaxation in entangled polymer liquids after step shear,” Phys. Rev. Lett. 97, 187801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187801
92.
Ravindranath, S. , and S.-Q. Wang, “ What are the origins of stress relaxation behaviors in step shear of entangled polymer solutions?,” Macromolecules 40, 80318039 (2007).
http://dx.doi.org/10.1021/ma071495g
93.
Fang, Y. , G. Wang, N. Tian, X. Wang, X. Zhu, P. Lin, G. Ma, and L. Li, “ Shear inhomogeneity in poly(ethylene oxide) melts,” J. Rheol. 55, 939949 (2011).
http://dx.doi.org/10.1122/1.3596599
94.
Archer, L. A. , Y.-L. Chen, and R. G. Larson, “ Delayed slip after step strains in highly entangled polystyrene solutions,” J. Rheol. 39, 519525 (1995).
http://dx.doi.org/10.1122/1.550710
95.
Ravindranath, S. , S.-Q. Wang, M. Olechnowicz, V. S. Chavan, and R. P. Quirk, “ How polymeric solvents control shear inhomogeneity in large deformations of entangled polymer mixtures,” Rheol. Acta 50, 97105 (2011).
http://dx.doi.org/10.1007/s00397-010-0507-0
96.
Boukany, P. E. , S.-Q. Wang, and X. Wang, “ Step shear of entangled linear polymer melts: New experimental evidence for elastic yielding,” Macromolecules 42, 62616269 (2009).
http://dx.doi.org/10.1021/ma9004346
97.
Zhou, L. , L. P. Cook, and G. H. McKinley, “ Probing shear-banding transitions of the vcm model for entangled wormlike micellar solutions using large amplitude oscillatory shear (laos) deformations,” J. Non-Newtonian Fluid Mech. 165, 14621472 (2010).
http://dx.doi.org/10.1016/j.jnnfm.2010.07.009
98.
Zhou, L. , R. H. Ewoldt, L. P. Cook, and G. H. McKinley, “ Probing shear-banding transitions of entangled liquids using large amplitude oscillatory shearing (laos) deformations. In A Co, LG Leal, RH Colby, and AJ Giacomin, editors, XVTH International Congress on Rheology – The Society of Rheology 80th Annual Meeting, Pts 1 and 2,” AIP Conf. Proc. 1027, 189191 (2008).
http://dx.doi.org/10.1063/1.2964629
99.
Tapadia, P. , S. Ravindranath, and S. Q. Wang, “ Banding in entangled polymer fluids under oscillatory shearing,” Phys. Rev. Lett. 96, 196001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.196001
100.
Cohen, I. , B. Davidovitch, A. B. Schofield, M. P. Brenner, and D. A. Weitz, “ Slip, yield, and bands in colloidal crystals under oscillatory shear,” Phys. Rev. Lett. 97, 215502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.215502
101.
Perge, C. , N. Taberlet, T. Gibaud, and S. Manneville, “ Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel,” J. Rheol. 58, 13311357 (2014).
http://dx.doi.org/10.1122/1.4887081
102.
Gibaud, T. , C. Perge, S. B. Lindstrom, N. Taberlet, and S. Manneville, “ Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress,” Soft Matter 12, 17011712 (2016).
http://dx.doi.org/10.1039/C5SM02587G
103.
Rouyer, F. , S. Cohen-Addad, R. Hoehler, P. Sollich, and S. M. Fielding, “ The large amplitude oscillatory strain response of aqueous foam: Strain localization and full stress fourier spectrum,” Eur. Phys. J. E 27, 309321 (2008).
http://dx.doi.org/10.1140/epje/i2008-10382-7
104.
Guo, Y. , W. Yu, Y. Xu, and C. Zhou, “ Correlations between local flow mechanism and macroscopic rheology in concentrated suspensions under oscillatory shear,” Soft Matter 7, 24332443 (2011).
http://dx.doi.org/10.1039/c0sm00970a
105.
Dimitriou, C. J. , L. Casanellas, T. J. Ober, and G. H. McKinley, “ Rheo-piv of a shear-banding wormlike micellar solution under large amplitude oscillatory shear,” Rheol. Acta 51, 395411 (2012).
http://dx.doi.org/10.1007/s00397-012-0619-9
106.
Gurnon, A. K. , and N. J. Wagner, “ Large amplitude oscillatory shear (laos) measurements to obtain constitutive equation model parameters: Giesekus model of banding and non-banding wormlike micelles,” J. Rheol. 56, 333351 (2012).
http://dx.doi.org/10.1122/1.3684751
107.
Calabrese, M. A. , S. A. Rogers, L. Porcar, and N. J. Wagner, “ Understanding steady and dynamic shear banding in a wormlike micellar solution,” J. Rheol. 60, 10011017 (2016).
108.
Fielding, S. M. , “ Criterion for extensional necking instability in polymeric fluids,” Phys. Rev. Lett. 107, 258301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.258301
109.
Hoyle, D. M. , and S. M. Fielding, “ Age-dependent modes of extensional necking instability in soft glassy materials,” Phys. Rev. Lett. 114, 158301 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.158301
110.
Larson, R. , Constitutive Equations for Polymer Melts and Solutions ( Butterworth, Stoneham, MA, 1988).
111.
McLeish, T. C. B. , and R. G. Larson, “ Molecular constitutive equations for a class of branched polymers: the pom-pom polymer,” J. Rheol. 42, 81110 (1998).
http://dx.doi.org/10.1122/1.550933
112.
Considère, M. , Ann. Ponts Chausées 9, 574 (1885).
113.
Hassager, O. , M. I. Kolte, and M. Renardy, “ Failure and nonfailure of fluid filaments in extension,” J. Non-Newtonian Fluid Mech. 76, 137151 (1998).
http://dx.doi.org/10.1016/S0377-0257(97)00115-8
http://aip.metastore.ingenta.com/content/sor/journal/jor2/60/5/10.1122/1.4961480
Loading
/content/sor/journal/jor2/60/5/10.1122/1.4961480
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/sor/journal/jor2/60/5/10.1122/1.4961480
2016-09-12
2016-12-09

Abstract

This précis is aimed as a practical field guide to situations in which shear banding might be expected in complex fluids subject to an applied shear flow. Separately for several of the most common flow protocols, it summarizes the characteristic signatures in the measured bulk rheological signals that suggest the presence of banding in the underlying flow field. It does so both for a steady applied shear flow and for the time-dependent protocols of shear startup, step stress, finite strain ramp, and large amplitude oscillatory shear. An important message is that banding might arise rather widely in flows with a strong enough time dependence, even in fluids that do not support banding in a steadily applied shear flow. This suggests caution in comparing experimental data with theoretical calculations that assume a homogeneous shear flow. In a brief postlude, we also summarize criteria in similar spirit for the onset of necking in extensional filament stretching.

Loading

Full text loading...

/deliver/fulltext/sor/journal/jor2/60/5/1.4961480.html;jsessionid=IoNy8mp92dli6XDM2FYCvcKu.x-aip-live-02?itemId=/content/sor/journal/jor2/60/5/10.1122/1.4961480&mimeType=html&fmt=ahah&containerItemId=content/sor/journal/jor2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=journalofrheology.org/60/5/10.1122/1.4961480&pageURL=http://scitation.aip.org/content/sor/journal/jor2/60/5/10.1122/1.4961480'
Right1,Right2,Right3,