Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Branda, S. , F. Chu, D. Kearns, R. Losick, and R. Kolter, “ A major protein component of the Bacillus subtilis biofilm matrix,” Mol. Microbiol. 59, 12291238 (2006).
Flemming, H.-C. , and J. Wingender, “ The biofilm matrix,” Nat. Rev. Microbiol. 8, 623633 (2010).
Lemon, K. P. , A. M. Earl, H. C. Vlamakis, C. Aguilar, and R. Kolter, “ Biofilm development with an emphasis on Bacillus subtilis,” in Bacterial Biofilms ( Springer-Verlag, Berlin, 2008).
Marvasi, M. , P. T. Visscher, and L. C. Martinez, “ Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis,” FEMS Microbiol. Lett. 313, 19 (2010).
Epstein, A. K. , B. Pokroy, A. Seminara, and J. Aizenberg, “ Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration,” Proc. Natl. Acad. Sci. U.S.A. 108, 9951000 (2011).
Costerton, J. , P. Stewart, and E. Greenberg, “ Bacterial biofilms: A common cause of persistent infections,” Science 284, 13181322 (1999).
Singh, R. , P. Ray, A. Das, and M. Sharma, “ Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms,” J. Antimicrob. Chemother 65, 19551958 (2010).
Grumbein, S. , M. Opitz, and O. Lieleg, “ Selected metal ions protect Bacillus subtilis biofilms from erosion,” Metallomics 6, 14411450 (2014).
Lieleg, O. , M. Caldara, R. Baumgaertel, and K. Ribbeck, “ Mechanical robustness of Pseudomonas aeruginosa biofilms,” Soft Matter 7, 33073314 (2011).
Ramasamy, P. , and X. Zhang, “ Effects of shear stress on the secretion of extracellular polymeric substances in biofilms,” Water Sci. Technol. 52, 217223 (2005).
Stoodley, P. , R. Cargo, C. Rupp, S. Wilson, and I. Klapper, “ Biofilm material properties as related to shear-induced deformation and detachment phenomena,” J. Ind. Microbiol. 29, 361367 (2002).
Morikawa, M. , “ Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species,” J. Biosci. Bioeng. 101, 18 (2006).
Costerton, W. , R. Veeh, M. Shirtliff, M. Pasmore, C. Post, and G. Ehrlich, “ The application of biofilm science to the study and control of chronic bacterial infections,” J. Clin. Invest. 112, 1466 (2003).
Simões, M. , L. C. Simões, and M. J. Vieira, “ A review of current and emergent biofilm control strategies,” LWT-Food Sci. Technol. 43, 573583 (2010).
Teschler, J. K. , D. Zamorano-Sánchez, A. S. Utada, C. J. Warner, G. C. Wong, R. G. Linington, and F. H. Yildiz, “ Living in the matrix: assembly and control of Vibrio cholerae biofilms,” Nat. Rev. Microbiol. 13, 255268 (2015).
Pavlovsky, L. , R. A. Sturtevant, J. G. Younger, and M. J. Solomon, “ Effects of temperature on the morphological, polymeric, and mechanical properties of staphylococcus epidermidis bacterial biofilms,” Langmuir 31, 20362042 (2015).
Cairns, L. S. , L. Hobley, and N. R. Stanley-Wall, “ Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms,” Mol. Microbiol. 93, 587598 (2014).
Hollenbeck, E. C. , J. C. N. Fong, J. Y. Lim, F. H. Yildiz, G. G. Fuller, and L. Cegelski, “ Molecular determinants of mechanical properties of V-cholerae biofilms at the air-liquid interface,” Biophys. J. 107, 22452252 (2014).
Zhang, W. , W. Dai, S. M. Tsai, S. M. Zehnder, M. Sarntinoranont, and T. E. Angelini, “ Surface indentation and fluid intake generated by the polymer matrix of Bacillus subtilis biofilms,” Soft Matter 11, 36123617 (2015).
Pavlovsky, L. , J. G. Younger, and M. J. Solomon, “ In situ rheology of Staphylococcus epidermidis bacterial biofilms,” Soft Matter 9, 122131 (2013).
Rogers, S. S. , C. van der Walle, and T. A. Waigh, “ Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and pseudomonas aeruginosa,” Langmuir 24, 1354913555 (2008).
Hohne, D. N. , J. G. Younger, and M. J. Solomon, “ Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms,” Langmuir 25, 77437751 (2009).
Cense, A. W. , E. A. G. Peeters, B. Gottenbos, F. P. T. Baaijem, A. M. Nuijs, and M. E. H. van Dongen, “ Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device,” J. Microbiol. Meth. 67, 463472 (2006).
Houari, A. , J. Picard, H. Habarou, L. Galas, H. Vaudry, V. Heim, and P. Di Martino, “ Rheology of biofilms formed at the surface of NF membranes in a drinking water production unit,” Biofouling 24, 235240 (2008).
Koza, A. , P. D. Hallett, C. D. Moon, and A. J. Spiers, “ Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25,” Microbiol-Sgm 155, 13971406 (2009).
Paramonova, E. , O. J. Kalmykowa, H. C. van der Mei, H. J. Busscher, and P. K. Sharma, “ Impact of hydrodynamics on oral biofilm strength,” J. Dent. Res. 88, 922926 (2009).
Donlan, R. M. , “ Biofilms: Microbial life on surfaces,” Emerging Infect. Dis. 8, 881890 (2002).
See supplementary material at for 5 additional figures about the accuracy and precision of the stretching device, strain determination, deformation fields, and statistics of biofilm measurements.[Supplementary Material]
Morikawa, M. , S. Kagihiro, M. Haruki, K. Takano, S. Branda, R. Kolter, and S. Kanaya, “ Biofilm formation by a Bacillus subtilis strain that produces gamma-polyglutamate,” Microbiology 152, 28012807 (2006).
Kesel, S. , S. Grumbein, I. Gumperlein, M. Tallawi, A. K. Marel, O. Lieleg, and M. Opitz, “ Direct comparison of physical properties of bacillus subtilis NCIB 3610 and B-1 biofilms,” Appl. Environ. Microbiol. 82, 24242432 (2016).
Hoskisson, P. A. , and G. Hobbs, “ Continuous culture—Making a comeback?,” Microbiology 151, 31533159 (2005).
Sun, D. , S. Roth, and M. J. Black, “ Secrets of optical flow estimation and their principles,” IEEE Conference on Computer Vision and Pattern Recognition (2010), pp. 24322439.
Landau, L. , and E. Lifschitz, Lehrbuch der Theoretischen Physik Band VII: Elastizitätstheroie ( Akademie-Verlag, Berlin, 1975).
Jensen, M. K. , O. Hassager, H. K. Rasmussen, A. L. Skov, A. Bach, and H. Koldbech, “ Planar elongation of soft polymeric networks,” Rheol. Acta 49, 113 (2010).
Hollenbeck, E. C. , C. Douarche, J. M. Allain, P. Roger, C. Regeard, L. Cegelski, G. G. Fuller, and E. Raspaud, “ Mechanical behavior of a bacillus subtilis pellicle,” J. Phys. Chem. B 120(26), 60806088 (2016).
Xi, C. , D. Marks, S. Schlachter, W. Luo, and S. A. Boppart, “ High-resolution three-dimensional imaging of biofilm development using optical coherence tomography,” J. Biomed. Opt. 11, 034001 (2006).
Aggarwal, S. , E. H. Poppele, and R. M. Hozalski, “ Development and testing of a novel microcantilever technique for measuring the cohesive strength of intact biofilms,” Biotechnol. Bioeng. 105, 924934 (2010).
Vignaga, E. , H. Haynes, and W. T. Sloan, “ Quantifying the tensile strength of microbial mats grown over noncohesive sediments,” Biotechnol. Bioeng. 109, 11551164 (2012).
Bell, G. I. , “ Models for the specific adhesion of cells to cells,” Science 200, 618627 (1978).
Cordier, P. , F. Tournilhac, C. Soulié-Ziakovic, and L. Leibler, “ Self-healing and thermoreversible rubber from supramolecular assembly,” Nature 451, 977980 (2008).

Data & Media loading...


Article metrics loading...



Bacterial biofilms are able to resist a broad range of chemical challenges as well as mechanical stress. The mechanical properties of natively grown biofilms, however, remain largely unknown. This is mostly due to a lack of suitable experimental setups which are capable of quantifying the mechanical properties of those biofilms in their naturally grown state, i.e., without harvesting and transferring the biofilm material into a measuring device. Here, we present a customized device which allows measuring material parameters of bacterial biofilms . Parameters that can be obtained from our stretching experiments include the tensile strength and rupture energy of native and chemically treated biofilms. Although the example measurements shown here have all been conducted with biofilms formed by the apathogenic soil bacterium B-1, the setup should be applicable to a broad range of bacterial biofilms or other viscoelastic materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd