Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/sor/journal/jor2/60/6/10.1122/1.4958667
1.
Branda, S. , F. Chu, D. Kearns, R. Losick, and R. Kolter, “ A major protein component of the Bacillus subtilis biofilm matrix,” Mol. Microbiol. 59, 12291238 (2006).
http://dx.doi.org/10.1111/j.1365-2958.2005.05020.x
2.
Flemming, H.-C. , and J. Wingender, “ The biofilm matrix,” Nat. Rev. Microbiol. 8, 623633 (2010).
http://dx.doi.org/10.1038/nrmicro2415
3.
Lemon, K. P. , A. M. Earl, H. C. Vlamakis, C. Aguilar, and R. Kolter, “ Biofilm development with an emphasis on Bacillus subtilis,” in Bacterial Biofilms ( Springer-Verlag, Berlin, 2008).
4.
Marvasi, M. , P. T. Visscher, and L. C. Martinez, “ Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis,” FEMS Microbiol. Lett. 313, 19 (2010).
http://dx.doi.org/10.1111/j.1574-6968.2010.02085.x
5.
Epstein, A. K. , B. Pokroy, A. Seminara, and J. Aizenberg, “ Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration,” Proc. Natl. Acad. Sci. U.S.A. 108, 9951000 (2011).
http://dx.doi.org/10.1073/pnas.1011033108
6.
Costerton, J. , P. Stewart, and E. Greenberg, “ Bacterial biofilms: A common cause of persistent infections,” Science 284, 13181322 (1999).
http://dx.doi.org/10.1126/science.284.5418.1318
7.
Singh, R. , P. Ray, A. Das, and M. Sharma, “ Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms,” J. Antimicrob. Chemother 65, 19551958 (2010).
http://dx.doi.org/10.1093/jac/dkq257
8.
Grumbein, S. , M. Opitz, and O. Lieleg, “ Selected metal ions protect Bacillus subtilis biofilms from erosion,” Metallomics 6, 14411450 (2014).
http://dx.doi.org/10.1039/C4MT00049H
9.
Lieleg, O. , M. Caldara, R. Baumgaertel, and K. Ribbeck, “ Mechanical robustness of Pseudomonas aeruginosa biofilms,” Soft Matter 7, 33073314 (2011).
http://dx.doi.org/10.1039/c0sm01467b
10.
Ramasamy, P. , and X. Zhang, “ Effects of shear stress on the secretion of extracellular polymeric substances in biofilms,” Water Sci. Technol. 52, 217223 (2005).
11.
Stoodley, P. , R. Cargo, C. Rupp, S. Wilson, and I. Klapper, “ Biofilm material properties as related to shear-induced deformation and detachment phenomena,” J. Ind. Microbiol. 29, 361367 (2002).
http://dx.doi.org/10.1038/sj.jim.7000282
12.
Morikawa, M. , “ Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species,” J. Biosci. Bioeng. 101, 18 (2006).
http://dx.doi.org/10.1263/jbb.101.1
13.
Costerton, W. , R. Veeh, M. Shirtliff, M. Pasmore, C. Post, and G. Ehrlich, “ The application of biofilm science to the study and control of chronic bacterial infections,” J. Clin. Invest. 112, 1466 (2003).
http://dx.doi.org/10.1172/JCI200320365
14.
Simões, M. , L. C. Simões, and M. J. Vieira, “ A review of current and emergent biofilm control strategies,” LWT-Food Sci. Technol. 43, 573583 (2010).
http://dx.doi.org/10.1016/j.lwt.2009.12.008
15.
Teschler, J. K. , D. Zamorano-Sánchez, A. S. Utada, C. J. Warner, G. C. Wong, R. G. Linington, and F. H. Yildiz, “ Living in the matrix: assembly and control of Vibrio cholerae biofilms,” Nat. Rev. Microbiol. 13, 255268 (2015).
http://dx.doi.org/10.1038/nrmicro3433
16.
Pavlovsky, L. , R. A. Sturtevant, J. G. Younger, and M. J. Solomon, “ Effects of temperature on the morphological, polymeric, and mechanical properties of staphylococcus epidermidis bacterial biofilms,” Langmuir 31, 20362042 (2015).
http://dx.doi.org/10.1021/la5044156
17.
Cairns, L. S. , L. Hobley, and N. R. Stanley-Wall, “ Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms,” Mol. Microbiol. 93, 587598 (2014).
http://dx.doi.org/10.1111/mmi.12697
18.
Hollenbeck, E. C. , J. C. N. Fong, J. Y. Lim, F. H. Yildiz, G. G. Fuller, and L. Cegelski, “ Molecular determinants of mechanical properties of V-cholerae biofilms at the air-liquid interface,” Biophys. J. 107, 22452252 (2014).
http://dx.doi.org/10.1016/j.bpj.2014.10.015
19.
Zhang, W. , W. Dai, S. M. Tsai, S. M. Zehnder, M. Sarntinoranont, and T. E. Angelini, “ Surface indentation and fluid intake generated by the polymer matrix of Bacillus subtilis biofilms,” Soft Matter 11, 36123617 (2015).
http://dx.doi.org/10.1039/C5SM00148J
20.
Pavlovsky, L. , J. G. Younger, and M. J. Solomon, “ In situ rheology of Staphylococcus epidermidis bacterial biofilms,” Soft Matter 9, 122131 (2013).
http://dx.doi.org/10.1039/C2SM27005F
21.
Rogers, S. S. , C. van der Walle, and T. A. Waigh, “ Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and pseudomonas aeruginosa,” Langmuir 24, 1354913555 (2008).
http://dx.doi.org/10.1021/la802442d
22.
Hohne, D. N. , J. G. Younger, and M. J. Solomon, “ Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms,” Langmuir 25, 77437751 (2009).
http://dx.doi.org/10.1021/la803413x
23.
Cense, A. W. , E. A. G. Peeters, B. Gottenbos, F. P. T. Baaijem, A. M. Nuijs, and M. E. H. van Dongen, “ Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device,” J. Microbiol. Meth. 67, 463472 (2006).
http://dx.doi.org/10.1016/j.mimet.2006.04.023
24.
Houari, A. , J. Picard, H. Habarou, L. Galas, H. Vaudry, V. Heim, and P. Di Martino, “ Rheology of biofilms formed at the surface of NF membranes in a drinking water production unit,” Biofouling 24, 235240 (2008).
http://dx.doi.org/10.1080/08927010802023764
25.
Koza, A. , P. D. Hallett, C. D. Moon, and A. J. Spiers, “ Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25,” Microbiol-Sgm 155, 13971406 (2009).
http://dx.doi.org/10.1099/mic.0.025064-0
26.
Paramonova, E. , O. J. Kalmykowa, H. C. van der Mei, H. J. Busscher, and P. K. Sharma, “ Impact of hydrodynamics on oral biofilm strength,” J. Dent. Res. 88, 922926 (2009).
http://dx.doi.org/10.1177/0022034509344569
27.
Donlan, R. M. , “ Biofilms: Microbial life on surfaces,” Emerging Infect. Dis. 8, 881890 (2002).
http://dx.doi.org/10.3201/eid0809.020063
28.
See supplementary material at http://dx.doi.org/10.1122/1.4958667 for 5 additional figures about the accuracy and precision of the stretching device, strain determination, deformation fields, and statistics of biofilm measurements.[Supplementary Material]
29.
Morikawa, M. , S. Kagihiro, M. Haruki, K. Takano, S. Branda, R. Kolter, and S. Kanaya, “ Biofilm formation by a Bacillus subtilis strain that produces gamma-polyglutamate,” Microbiology 152, 28012807 (2006).
http://dx.doi.org/10.1099/mic.0.29060-0
30.
Kesel, S. , S. Grumbein, I. Gumperlein, M. Tallawi, A. K. Marel, O. Lieleg, and M. Opitz, “ Direct comparison of physical properties of bacillus subtilis NCIB 3610 and B-1 biofilms,” Appl. Environ. Microbiol. 82, 24242432 (2016).
http://dx.doi.org/10.1128/AEM.03957-15
31.
Hoskisson, P. A. , and G. Hobbs, “ Continuous culture—Making a comeback?,” Microbiology 151, 31533159 (2005).
http://dx.doi.org/10.1099/mic.0.27924-0
32.
Sun, D. , S. Roth, and M. J. Black, “ Secrets of optical flow estimation and their principles,” IEEE Conference on Computer Vision and Pattern Recognition (2010), pp. 24322439.
33.
Landau, L. , and E. Lifschitz, Lehrbuch der Theoretischen Physik Band VII: Elastizitätstheroie ( Akademie-Verlag, Berlin, 1975).
34.
Jensen, M. K. , O. Hassager, H. K. Rasmussen, A. L. Skov, A. Bach, and H. Koldbech, “ Planar elongation of soft polymeric networks,” Rheol. Acta 49, 113 (2010).
http://dx.doi.org/10.1007/s00397-009-0383-7
35.
Hollenbeck, E. C. , C. Douarche, J. M. Allain, P. Roger, C. Regeard, L. Cegelski, G. G. Fuller, and E. Raspaud, “ Mechanical behavior of a bacillus subtilis pellicle,” J. Phys. Chem. B 120(26), 60806088 (2016).
http://dx.doi.org/10.1021/acs.jpcb.6b02074
36.
Xi, C. , D. Marks, S. Schlachter, W. Luo, and S. A. Boppart, “ High-resolution three-dimensional imaging of biofilm development using optical coherence tomography,” J. Biomed. Opt. 11, 034001 (2006).
http://dx.doi.org/10.1117/1.2209962
37.
Aggarwal, S. , E. H. Poppele, and R. M. Hozalski, “ Development and testing of a novel microcantilever technique for measuring the cohesive strength of intact biofilms,” Biotechnol. Bioeng. 105, 924934 (2010).
http://dx.doi.org/10.1002/bit.22605
38.
Vignaga, E. , H. Haynes, and W. T. Sloan, “ Quantifying the tensile strength of microbial mats grown over noncohesive sediments,” Biotechnol. Bioeng. 109, 11551164 (2012).
http://dx.doi.org/10.1002/bit.24401
39.
Bell, G. I. , “ Models for the specific adhesion of cells to cells,” Science 200, 618627 (1978).
http://dx.doi.org/10.1126/science.347575
40.
Cordier, P. , F. Tournilhac, C. Soulié-Ziakovic, and L. Leibler, “ Self-healing and thermoreversible rubber from supramolecular assembly,” Nature 451, 977980 (2008).
http://dx.doi.org/10.1038/nature06669
http://aip.metastore.ingenta.com/content/sor/journal/jor2/60/6/10.1122/1.4958667
Loading
/content/sor/journal/jor2/60/6/10.1122/1.4958667
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/sor/journal/jor2/60/6/10.1122/1.4958667
2016-09-21
2016-12-06

Abstract

Bacterial biofilms are able to resist a broad range of chemical challenges as well as mechanical stress. The mechanical properties of natively grown biofilms, however, remain largely unknown. This is mostly due to a lack of suitable experimental setups which are capable of quantifying the mechanical properties of those biofilms in their naturally grown state, i.e., without harvesting and transferring the biofilm material into a measuring device. Here, we present a customized device which allows measuring material parameters of bacterial biofilms . Parameters that can be obtained from our stretching experiments include the tensile strength and rupture energy of native and chemically treated biofilms. Although the example measurements shown here have all been conducted with biofilms formed by the apathogenic soil bacterium B-1, the setup should be applicable to a broad range of bacterial biofilms or other viscoelastic materials.

Loading

Full text loading...

/deliver/fulltext/sor/journal/jor2/60/6/1.4958667.html;jsessionid=ydryKNIlicMlW8dVRPuRB8mX.x-aip-live-06?itemId=/content/sor/journal/jor2/60/6/10.1122/1.4958667&mimeType=html&fmt=ahah&containerItemId=content/sor/journal/jor2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=journalofrheology.org/60/6/10.1122/1.4958667&pageURL=http://scitation.aip.org/content/sor/journal/jor2/60/6/10.1122/1.4958667'
Right1,Right2,Right3,